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Abstract 
 
 
 

Nanostructured NbN superconducting single-photon detectors (SSPDs) are 

fast and reliable photon counters that have become a highly desired technology in 

recent years.  SSPDs feature counting rates up to 250 MHz in the wavelength range 

from UV to mid-IR, along with very low dark count rates, low timing jitter, and high 

detection efficiencies.   

Nanosecond and sub-nanosecond spontaneous transient voltage pulses, or 

dark counts, are studied in SSPDs along with NbN nanostripes of various dimensions.  

Dark counts, along with quantum efficiency (QE), determine the ultimate SSPD 

sensitivity.  In experiments, the detector was completely isolated from the outside 

world by a metallic shield, and kept at temperatures below the superconducting 

critical temperature.  Dark counts are associated with the formation of phase-slip 

centers, and dissociation of vortex-antivortex pairs, due to thermal fluctuations.  Both 

temperature and current dependences are studied extensively.  Additionally, resistive 

transitions of different samples are investigated, as well as their transport properties. 

Investigation of the photodetection mechanism, which requires understanding 

of hotspot dynamics, is presented.  This was accomplished by measuring the QE 

dependence on temperature; it was found that QE increases monotonically with 

decreasing temperature. 

Additionally, two different read-out schemes are presented: the first is the 

standard scheme, where SSPDs act as photon counters, and dark counts are 



 
ix

indistinguishable from photon counts.  The second scheme is based on integrating the 

SSPD with a low-noise cryogenic HEMT amplifier with high-input impedance, which 

allows us to achieve amplitude resolution of the recorded output transients. The new 

read-out technique should enable photon-number resolving capability of standard 

devices, and possibly even energy-resolving capability, while also allowing us to 

study further the physics of dark counts and the photoresponse mechanism. 
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Chapter 1 Superconducting single-photon detectors 

 
Fast and reliable single-photon detectors (SPDs) have become a highly sought 

after technology in recent years.  Applications for ultraviolet (UV) to infrared (IR) 

detection range from single-molecule fluorescence to high-resolution astronomy, 

linear optical quantum computing, quantum communications, and single photon 

metrology. 

 Some of the most interesting applications for SPDs, which include quantum 

cryptography and quantum key distribution (QKD), as well as satellite 

communications, require devices that can operate at telecommunications 

wavelengths, namely 1310 nm and 1550 nm.  Silicon avalanche photodiodes (APDs) 

cannot operate in these regimes, as the bandgap of Si is too wide (1.1 eV) [1], while 

photomultiplier tube’s (PMT) performance is not satisfactory for most applications.  

One solution is to use a semiconductor material with a narrower bandgap, such as 

InGaAs, for APDs.  Such devices are widely used, they have, however, complicated 

biasing and read-out schemes, due to high dark count rates (~ 10 kHz) and large 

timing jitter [2],[3],[4].  Because the InGaAs fabrication technology is still immature 

(as compared to Si), such APDs need to be time-gated and quenched, which slows 

down their operational speed to a 1-MHz maximum count rate [5]. 
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 A different class of SPDs are superconducting detectors.  Three main types of 

superconducting photon counters are available to us today.  Superconducting tunnel 

junctions (STJs) [6],[7] and tungsten-based transition-edge sensors (TESs) [8],[9] are 

not only sensitive to single photons in the IR range, have low dark counts and low 

timing jitter, but also exhibit capability for photon-number resolution, which is highly 

desirable for many advanced SPD applications.  The main drawback, however, is that 

they are quite slow, with counting rates of up to 50 kHz.  Another drawback is their 

sub-Kelvin operation temperatures, which means they require dilution refrigerators in 

order to operate. 

 Perhaps the most promising and practical type of a superconducting detector 

is the NbN single-photon detector (SSPD). SSPDs are nanostructured ultrathin (4-nm 

thickness), submicron width (80 to 120 nm), and up to 500-μm-long meandering NbN 

stripes fabricated on epitaxial-quality sapphire substrates [10],[11].  They are ultrafast 

photon counters with a timing jitter below 20 ps [12], moderate-to-high quantum 

efficiently within the wavelength range from IR to UV, very low dark counts, and 

operation at liquid helium temperatures. The device’s operation temperature is 

between 2 and 4.2 K, far below the NbN critical temperature Tc, and they are biased 

with a dc current close to the superconducting critical current Ic.  In contrast to the 

semiconductor counterparts, SSPDs do not need quenching circuits, nor time gating.  

The devices have been already successfully implemented in commercial testers for 

noninvasive VLSI chip debugging [13], and are very promising as 
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telecommunication-wavelength photon counters for both free-space (satellite) and 

fiber-based (network) quantum communications and QKD applications [14]. 

 

1.1 Fabrication and material characterization 

NbN superconducting films are typically deposited on epitaxially flat R-plane 

sapphire substrates via dc reactive magnetron sputtering in Ar and N2 mixture and are 

characterized by the room temperature sheet resistance of about 250 Ω/square to 500 

Ω/square, Tc ≈ 11 K, and critical current density Jc = 6 to 7 MA/cm2 at T = 4.2 K.  

During the NbN deposition process the substrate is heated up to 900 K, leading to an 

epitaxial growth of the film.  The most recent detectors, shown in Fig. 1.1, have a 

meander-type geometry that covers a 10 × 10 μm2 area and has a filling factor (ratio 

of the area occupied by the superconducting meander to the device nominal area) up 

to 0.5.  The width of the superconducting stripe is typically 80 to 120 nm, with 4 nm 

thickness. 
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Figure 1.1 SEM images of SSPDs. (a) One of the older devices with 150 nm stripe width, the red 
dotted line shows the meander structure.  (b) A latest device with 10 x 10 μm2 active area and 120 
nm stripe width, NbN here is black. 

Figure 1.2 presents a typical dependence of the sheet resistance on 

temperature for a meander-like 4-nm thick SSPD, measured in the temperature range 

between 4.2 and 300 K, with a bias current of 500 nA (small fraction of the critical 

current at T = 4.2 K), to insure minimal Joule heating.  The sheet resistance increased 

with temperature decrease, which indicates that the NbN film may be under some 

stress given by a lattice mismatch with the sapphire substrate.  The overall low sheet 

resistance values indicate that the NbN film is structurally homogeneous. 

 Figure 1.3 shows the comparison between the superconducting transition of a 

plain NbN film and a patterned meander.  In both cases, the superconducting 

transition width is practically the same, confirming that meander patterning does not 

degrade superconducting properties of our devices. 
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Figure 1.2 Sheet resistance dependence on temperature for a typical SSPD. 

 

 

 

Figure 1.3 Comparison of resistance dependence on temperature for a NbN film, and a typical 
SSPD. 
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Figure 1.4 shows schematically the SSPD fabrication process, where the 

devices are patterned using direct e-beam lithography and subsequent selective ion 

etching [15].  Here, the areas under which the superconducting film is removed are 

exposed in the resist during electron beam lithography.  The minimal width of the 

stripe is largely determined by scattering in the photoresist and does not depend 

directly on the electron beam diameter.  An 80-nm thick layer of resist PMMA 950 K 

is later removed from the superconductor using reactive ion etching.  This process 

results in a narrow meander stripe with uniform edges and a high yield of good 

devices. 

Early devices, and later NbN nanobridge structures used in our dark count 

studies, were patterned by lift-off electron-beam lithography and ion milling, as 

shown in detail in Fig. 1.5.  Here, a Ti mask is deposited and patterned where the 

nanobridges will eventually be, and the ion beam milling of the unprotected NbN 

film, and chemical etching of the Ti mask are required.  This latter technological 

process has its limitations, among them the most important are unavoidable electron 

illumination of unexposed photoresist areas and the need for a consistent lift-off 

process, which results in somewhat nonuniform edges of nanobridges; thus, it was 

discontinued for fabrication of meanders, but worked fine for the simple, single-

bridge structures[16]. The SSPD/nanobridge fabrication of almost all studied devices 

in this thesis was performed in the group of Professor G. N. Golt’sman at the Moscow 
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State Pedagogical University in Moscow, Russia.  Many such devices were actually 

fabricated during my two, two-months visits to Moscow. 
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Figure 1.4 SSPD fabrication process, direct e-beam lithography. 
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Figure 1.5 Nanobridge fabrication process, lift-off e-beam lithography.  There are two bridges, 
completely isolated from each other, on each chip. 
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1.2 Photoresponse mechanisms in superconductors  

Before discussing experimental results of our nanowire detectors, we first 

need to understand the photoresponse processes in superconductors.  Two main types 

are nonequilibrium hot-electron effect and equilibrium thermal heating [17].  As the 

nonequilibrium photoresponse is the process under which the SSPD operates, here, I 

will only focus on this mechanism. 

During the nonequilibrium process, there is a heating of electron and phonon 

subsystems in a superconductor, after absorption of a photon.  The radiation 

thermalizes first within the electron subsystem via electron-electron (e-e) interaction, 

which causes the temperature of the electron subsystem Te to increase with a specific 

heat Ce.  Next, the electrons relax by interacting with phonons via electron-phonon (e-

ph) interaction, after which the temperature of the phonon subsystem Tph also rises, 

with a specific heat Cph.  Some of the phonons can give the energy back to the 

electron subsystem through ph-e interaction, and eventually all the phonons escape to 

the substrate and the system returns to equilibrium.  The above process can be 

described very well by a two-temperature (2-T) model, as illustrated in Fig. 1.6 and 

described by [18],[19].  Strictly speaking, the 2-T model is applicable for normal 

metals, and superconducting materials at temperatures near the superconducting Tc.  It 

can be, however, quite successfully extended to devices operating far below Tc, as 

long as the optical perturbation is very weak (as, e.g., in our single-photon case). 
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Figure 1.6 Two-temperature model.  After photoabsorption, electrons thermalize on a τT time 
scale.  The energy from the electron subsystem is then transferred to the phonon subsystem with 
a time τe-ph.  Some of the phonons give the energy back to the electron subsystem with time τph-e, 
and the phonon escape time into the substrate is given by τes. 

 

For T << Tc, and/or under moderate to intense illumination, the 

nonequilibrium photoresponse of superconductors has to be described by the 

Rothwarf-Taylor (R-T) model [20], which deals with the changes in the quasiparticle 

and phonon densities and is schematically illustrated in Fig. 1.7.  Here, a Cooper pair 

is broken upon absorption of a photon, into a highly excited hot electron and a low 

energy quasiparticle.  The hot electron relaxes while breaking more Cooper pairs via 

e-e and e-optical-ph interactions.  The high energy phonons generated during this 

thermalization process have enough energy to break more Cooper pairs, generating 

more electrons, which eventually relax back into low energy states just above the 

superconducting energy gap 2Δ, and recombine into Cooper pairs with recombination 
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time τR.  Phonons emitted during the quasiparticle recombination process have, 

however, the energy equal to at least 2Δ, so they can break Cooper pairs as well, 

which occurs on a timescale τB.  The above processes continue simultaneously, until, 

eventually, all the phonons escape into the substrate with the escape time τes.  The R-

T dynamics are nonlinear, as the Cooper-pair recombination with emission of a 

phonon and phonon-induced pair breaking processes are coupled together.  However, 

for weak optical perturbation, the R-T equations can be linearized, and become 

formally identical to the 2-T model. 

 

Figure 1.7 Rothwarf-Taylor model, (a) a photon breaks a Cooper pair to create a highly-excited 
quasiparticle, which breaks other Cooper pairs via electron-electron and electron-phonon 
interactions.  (b) Quasiparticles begin to recombine and emit acoustic phonons with energy 2Δ.  
(c) 2Δ-phonons have enough energy to break other Cooper pairs.  (d) Phonons escape to the 
substrate. 
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1.3 Electrical model and device performance  

In spatial terms, the SSPD photoresponse model can be described by hotspot 

formation.  Following, e.g., the 2-T model, the intensity of cascade multiplication and 

thermalization [21] of nonequilibrium quasiparticles (NQPs) is defined by the e-e and 

e-ph interactions, with characteristic relaxation times τe-e and τe-ph, respectively [22].  

Once the concentration of NQPs in the site of photon absorption reaches the normal-

state limit, a resistive hotspot appears in the superconducting film.  An increase in 

concentration of NQPs leads to their diffusion out of the photon absorption area with 

a characteristic diffusion coefficient D, which depends on the mobility of NQPs and 

homogeneity of the superconducting film.  If the film is electrically two-dimensional, 

i.e., the film thickness is d < Lth = (Dτ th )1/ 2, where τth is the NQP thermalization time, 

Lth is the electron thermalization length, the hotspot forms a cylindrical slab 

containing n = NoΔ number of uniformly distributed NQPs.  Here, No is the electron 

density of states at the Fermi level. Using experimentally measured values, D = 0.45 

cm2/s [21] and τth = 6.5 ps [22], we calculate Lth = 17 nm. 

In macroscopic samples, photon perturbation and subsequent hotspot 

formation have a negligible impact on the superconducting state. However, if we have 

a nanowire with transverse dimensions comparable with the hotspot diameter, such 

that in our SSPDs, a photodetection process can take place.  The hotspot region, due 

to quasiparticle diffusion, will eventually form across the entire width and thickness 

of the stripe, and in turn give rise to a transient voltage signal. 
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It is important to mention that the detector’s temporal response, or counting 

rate, is limited by the large kinetic inductance Lk of the SSPD structures [23].  Kinetic 

inductance is the magnetic energy stored in the motion of charge carriers, and in thin 

superconducting films, it far exceeds the regular geometric inductance.  A typical 

voltage pulse corresponding to the photon detection, along with an equivalent 

electrical model of the SSPD photoresponse, are shown in Figs. 1.8(a) and 1.8(b), 

respectively.  The Lk element is in series with a parallel arrangement of a hotspot 

resistance Rhs and a switch S represents the photodetection (switching) event in the 

SSPD.  The detector is then connected to a dc bias source and a read-out circuit, 

which consists in this case of a transmission line and amplifier with input impedance 

Zo = 50 Ω.  In the simulations, which will be presented later, a band-pass filter 

representing the amplifier bandwidth is added. Finally, Vout is the experimentally 

observed transient voltage pulse during photodetection.   

Initially, the switch is closed, and there is no voltage drop.  Once a photon is 

absorbed by the nanostripe and the resistive state is formed, the switch opens, and as 

Rhs grows to a value much larger than Zo, most of the current redistributes into Zo, and 

the resultant voltage pulse amplitude is simply Vout ≈ IbZo.  Then, the rise-time 

constant Vout is τ rise = Lk /(Rhs + Zo)  [23].  After the current through the device drops 

to a sufficiently low value, the cooling mechanisms can take over, the switch closes, 

and the fall-time constant of the pulse is now τ fall = Lk /Zo .  In a typical, large-mander  

SSPD, Lk is on the order of 500 nH, and if Zo = 50 Ω, then τfall = 10 ns, which makes 
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SSPDs still significantly faster than the other superconducting and semiconducting 

detectors. 

 

 

Figure 1.8  (a) Transient voltage pulse corresponding to a single-photon event (black line), a 
simulated photoresponse (dashed line).  (b) Equivalent electrical model of the photoresponse 
mechanism [23].  

 

When operated at T = 4.2 K, SSPDs typically demonstrate quantum 

efficiencies (QEs) up to 20% for the visible light photons (up to 800 nm), and up to 

10% in the near-IR (NIR).  Table 1.1 compares performance of semiconducting APDs 

with superconducting SPDs.  Decreasing the temperature down to 2 K improves the 

SSPD operation significantly, given by lower dark counts and higher QEs: up to 30% 

in the visible range, which is the limit given by the optical absorption of NbN films.   

Recently, we have observed a QE of ~ 30% at a telecommunication wavelength of 1.3 

μm for their best large-area (10 × 10 μm2) detector, with a dark count rate below 2 × 

10-4 Hz, and photon counting rate up to 250 MHz [24]. The latter counting rate was 

limited by the large Lk values, but we should note here that the earlier, small active 

area SSPDs demonstrated count rates up to 1 GHz [16].  Nevertheless, we typically 
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choose to work with the large-area devices, as they provide higher detection 

efficiencies (DE) due to low losses in the system (large active area provides better 

photon coupling). 

In 2006, Rosfjord et al. [25] achieved DE efficiencies up to 57% at a 

telecommunication wavelength of 1.55 μm (67% at 1.064 μm), by integrating a 

quarter-wavelength cavity on top of the detector, and anti-reflection coating at the 

bottom of the substrate, in order to trap photons and subsequently increase the 

effective QE. 

Table 1.1 Comparison of single-photon detectors 
Detectors Si APDs InGaAs APDs TES SPD STJ SPD SSPD 

Temperature (K) 300 200 0.1 0.4 2 – 4.2 
Wavelength (μm) 0.4 – 1.1 0.9 – 1.7 0.1 – 5 0.2 – 1 0.3 – 5.6 
Time resolution 300 ps 300 ps 300 ns < 2 ns 18 ps 

Quantum 
efficiency 

70% @ 630 nm 25% @ 1.55 μm 92% @ 1.55 μm 50% @ 500 nm 10% @ 1.55 μm 

Dark count rate 
(Hz) 

< 25 < 104 < 10-3 N/A < 0.01 

Maximum count 
rate 

10 MHz 1 MHz 20 kHz 50 kHz 250 MHz 

Photon number 
resolution 

Very limited No Yes Yes In progress 

 

Quite recently, a QKD system using a 200 km fiber link has been 

demonstrated and tested with a twin SSPD setup at 1.55 μm [26].  In addition, various 

single-photon sources (quantum dots and quantum wells emitting at different 

wavelengths) have been characterized using twin SSPDs [27],[28].  Also 

experimentally demonstrated are heralding of telecommunication photon pairs [29], 

and a 781 Mbit/s photon-counting optical communication [30] in a combined APD 

and SSPD system. 
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1.4 Thesis motivation 

When the detector is completely blocked from all incoming radiation 

(shielded by a metallic enclosure), one can observe sporadic voltage pulses, identical 

in their temporal shape to the actual photon counting events, as shown in Fig. 1.9.  

Those events are purely spontaneous and they constitute the device dark counts.  The 

dark counts directly affect any detector performance, as they determine its noise 

equivalent power (NEP), which in turn defines the sensitivity.  For quantum 

detectors, the NEP is given by [31] 

NEP =
hν
QE

2Rdk , (1.1) 

where hν  is the photon energy, and Rdk is the dark counting rate. 

Figures 1.10(a) and 1.10(b) show typical dependences of QE and Rdk on the 

bias current Ib, respectively, recorded in our laboratory [32],[33].  Both increase near-

exponentially with Ib, so when it comes to the sensitivity of the device, there will 

always be a trade-off between QE and Rdk, as shown by (1.1).  The dark counts are, of 

course, an undesired phenomenon, and their full understanding in the context of the 

photodetection mechanism is the main topic of this thesis.  From this practical point 

of view, minimization of dark counts will lead to improvements of the overall 

performance of SSPDs, as well as to a better understanding of their intrinsic 

performance and photodetection mechanism. 
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Figure 1.9 Comparison of dark-count event (dotted line) with a photon-count event (gray line). 

 

 

Figure 1.10 (a) Typical QE dependence on bias current and (b) dark counting rate dependence 
on bias current at temperatures 2.0 (red symbols) and 4.2 K (black symbols).  The dashed lines 
indicate typical operation point, Ib/Ic = 0.9. 
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1.5 Outline of the thesis 

In Chapter 2, experimental methods, including both testing set-ups and 

procedures, are described in detail.  In Chapter 3, I introduce dissipation mechanisms 

in one-dimensional and two-dimensional superconductors, which are the foundation 

for our dark count studies, and even give us clues into the NbN SSPD intrinsic 

operation, which is missing in the standard hotspot model.  In Chapter 4, I report on 

my experimental studies of dark counts in NbN SSPDs as well as in superconducting 

NbN nanobridges.  The latter structures were additionally fabricated in order to help 

us to gain a better insight into the physics of dark counts, by performing experiments 

on the simple, single-stripe structures.  Chapter 5 investigates the photodetection 

mechanism as the dynamic hotspot process, along with the fluctuation-enhanced 

photodetection approach.  In Chapter 6, I discuss how photon-number resolution 

(PNR) capability may be achievable with our devices using read-out electronics and a 

cryogenic low-noise amplifier.  Finally, Chapter 7 summarizes and concludes my 

work. 
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Chapter 2 Experimental methods 

 

2.1 Dark counts 

For dark count measurements, we decided to fabricate simple NbN 

nanobridge structures of different widths and lengths, along with the standard SSPDs. 

The NbN nanobridges have much lower Lk values as compared with SSPDs, which 

makes them better candidates for dark count studies.  An SEM image of a chip 

containing two separate nanobridges is shown in Fig. 2.1. 

 

 

Figure 2.1 SEM image of two nanobridge structures on the same chip. 

  

The experimental setup for Rdk measurements is shown in Fig. 2.2, where the 

device is surrounded by a metallic enclosure and placed inside a variable-temperature 

cryostat.  The structures were wire bonded to a microstrip transmission line, which in 
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turn was attached to a standard semirigid coaxial cable, and on the other end 

connected to a room-temperature bias-tee (bandwidth 0.08 – 26 GHz).  The bias-tee 

allowed to simultaneously amplify the signal using a tandem of two broadband 

amplifiers (bandwidth 0.08 – 8.5 GHz; gain 22 dB), and bias it by a stable low noise 

dc voltage source, in series with a 50 kΩ resistor.  The amplified dark counts were 

recorded either on a Tektronix TDS 6604 6-GHz digital single-shot oscilloscope, or 

using a photon counter.  The measurements were performed in superfluid helium at 

temperatures between 1.5 K and 2.17 K, liquid helium at temperatures between 2.18 

K and 4.2 K, and helium vapor between 4.2 K and 8 K. The sample chamber was 

surrounded by a metallic enclosure and a μ-metal shield, to prevent outside radiation 

from coming into contact with the device, and to minimize the Earth’s magnetic field 

surrounding the device. 

 Some of the dark counting rate measurements, which I will present in Chapter 

4, were performed inside an adiabatic refrigerator, at temperatures from 100 mK to 

5.5 K, where the devices were in vacuum.  The room temperature electronics were the 

same, and we did not observe any difference in the data taken for devices immersed 

in helium versus devices measured in vacuum.  The sub-Kelvin measurements were 

performed together with Dr. Sae Woo Nam at the National Institute of Standards and 

Technology in Boulder, Colorado. 
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Figure 2.2 Experimental setup for dark count measurements. 

 

 Current-voltage (IV) characteristics for dissipation measurements near Tc were 

taken by sweeping a current from the Keithley 220 current source through a device, 

and reading out voltage across a device.  The samples were once again placed inside a 

variable temperature cryostat, and surrounded by metallic enclosure and a μ-metal 

shield.  This time, they were directly connected to a current source and a voltmeter. 

 For resistance versus temperature (RT) measurements at low currents 

(between 100 nA and 1 μA), a lock-in amplifier was utilized to minimize the noise in 

the measured voltage.  A 26.1-Hz voltage oscillator connected in series with a 100 kΩ 

resistor comprised the current source, and a lock-in amplifier were used to measure 
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the voltage drop across the device.  A schematic diagram of this experiment is shown 

in Fig. 2.3.  

 

Figure 2.3 Low-bias resistance measurement schematic.  The current source is the 26.1 Hz 
voltage oscillator in series with a 100 kΩ resistor.  The lock-in amplifier reads out the voltage 
across the SSPD. 

 

2.2 Photon counts and quantum efficiency 

 A fiber-based setup was used for the QE dependence on temperature 

measurements.  A photon beam was aligned with the optical fiber, and the fiber was 

in turn aligned with the SSPD.  A Ti:Sapphire laser, with the beam heavily attenuated 

by neutral density filters, and tunable between 700 nm and 1000 nm wavelengths, 

was used as a single-photon source.  When mode-locked, 100-fs-wide laser pulses 

came at a repetition rate of 78 MHz.  Electrically the detector was connected at room 

temperature to the same instruments as for the dark count measurements: a bias tee, a 

low-noise dc voltage source in series with a 50 kΩ resistor, and a 300-MHz pulse 

counter.  The schematic in Fig. 2.4 shows a typical fiber-based measurement setup. 
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Figure 2.4 Fiber-based experimental setup 

 

2.3 HEMT-amplifier-based detection setup 

We have already established that after photon absorption, a resistive hotspot 

region is formed, and this resistance is estimated to be on the order of several hundred 

ohms, depending on operating conditions.  In this case, after the hotspot formation, 

most of the current switches to the load impedance, in our case 50 Ω load line 

(characteristic impedance of the coaxial line and the amplifiers), and the amplitude of 

the observed response is simply given by Ohm’s law, Vpulse ≈ G × Ib × 50 Ω, where G 

is the amplifier gain.   

 For dark-count pulse amplitudes and PNR measurements, which should in 

principle allow us to resolve pulse amplitudes, e.g., corresponding to the number of 

absorbed photons, a high electron mobility transistor (HEMT) amplifier was mounted 

next to the SSPD [34]. This setup was designed and implemented at Delft University 

of Technology in Delft, The Netherlands, and experiments were performed during my 

six-months visit there.  Because the HEMT impedance is nearly infinite, we utilized a 

500-Ω load resistor RL in parallel with the detector and the HEMT, to ensure that the 

current redistributes differently through the sample. A HEMT is a heterostructure 

field-effect transistor (FET), with a heterojunction as the channel instead of a doped 
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region.  The heterojunction creates a thin layer of very mobile electrons with a high 

concentration, and this layer is called a two-dimensional electron gas.  Because 

HEMT pinch-off voltage is negative, it is always on, even when the SSPD is 

superconducting and the gate voltage is zero, and it operates in the linear (amplifier) 

region.  As the SSPD resistance grows, the gate voltage increases, and the current 

through the channel increases linearly with it.  Thus, the conductivity in the channel is 

altered, and we can read out a voltage pulse.  Then, this voltage will ideally be 

directly proportional to the hotspot resistance, and if a number of photons are 

absorbed in the SSPD, forming separate hotspots in a long meander, these hotspot 

resistances will add up in series.  Thus, the number of photons absorbed will be 

proportional to the pulse height. 

 A schematic of such a circuit is shown in Fig. 2.5, together with a picture of 

the cold head shown in the inset.  The SSPD is mounted on a printed circuit board and 

wire-bonded, with the HEMT and RL mounted on the same board, all electrically 

connected to a SMA jack.  The SMA connects to a 50 Ω coaxial cable, which allows 

to both bias the devices, and read out the ac voltage signal which constitutes photon 

counts. 
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Figure 2.5 Circuit schematics implementing HEMT amplifier and a 500-Ω load resistor, RL.  The 
10 nF capacitor sets the maximum AC gain and 200-Ω resistor sets the DC current for the 
HEMT; Rbias and RD are the biasing and pull-up resistors, respectively.  The inset shows the 
actual physical layout. 

 

2.4 PSpice simulations and circuit limitations 

 In order to understand the electrical photoresponse of our SSPDs and decide 

on the operating parameters of the read-out circuit, we have performed extensive 

PSpice simulations using a commercial PSpice program.  The above approach was 

especially important in the case of HEMT-based read-out, since the amplifier was 

directly (in helium) integrated with the SSPD.  Already the first PSpice simulations 

reveal that RL values higher than ~ 270 Ω lead to an underdamped circuit.  The reason 

is that, as shown in Fig. 2.5, there is a large inductor (~ 500 nH Lk of the SSPD) in 

parallel with RL. In addition, there is also always in our read-out circuit a small 

parasitic capacitance, coming from a circuit board, as well as other components, 

estimated to be around 2 to 3 pF. Figure 2.6(a) shows the PSpice simulated pulses for 

different values of RL, and based on this figure, we chose the value of RL to be 500 Ω 
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[green line in Fig. 2.6(a)], even though we suspect that this value might be lower than 

the hotspot resistance, however, the underdamping for higher RL’s is too large, and 

would limit the detector’s counting rate.  Figure 2.6(b) shows the experimental (black 

line), as well as simulated (red line) voltage pulses for our HEMT read-out approach.  

The broader, more damped oscillation behind the measured main pulse is likely due 

to some second order effects from the amplifier and/or stainless steel coaxial line.  

For the device used here, Ic = 5.5 μA at T = 4.2 K, and the fit from the simulation 

yields Rhs ~ 1.2 kΩ.   

 

Figure 2.6 PSpice simulations of voltage transients at different values of RL: 50 Ω (black curve), 
270 Ω (red curve), 500 Ω (green curve), and 2 kΩ (blue curve); and (b) measured photoresponse 
(black curve) and simulated photoresponse (red curve), for RL = 500 Ω. 

 

 As increasing RL leads to further underdamping [Fig. 2.6(a)], more 

underdamping leads to latching of SSPDs.  In other words, when the circuit is not 

damped enough, once the detector absorbs a photon, the entire stripe eventually 

switches to the resistive state, and it will not become superconducting again quickly 

unless the dc current source is switched off.  This can be seen in Fig. 2.7, which 
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shows an experimentally observed latching event (black curve) compared with a 

standard photodetection event (red curve) in the HEMT circuit.  The rise-time 

constant in the latched pulse is now just the relaxation time of the HEMT.  This limits 

the performance of our devices implemented into the HEMT setup, and also limits the 

value of RL. 

 For a given RL, so long as the circuit is underdamped, the frequency of 

latching events increases with the bias current.  This is illustrated in Fig. 2.8, and can 

be explained in the following way.  When we monitor the current through the device 

after photon absorption, it initially drops to a value Ib ≤ 0.2Ic, which allowed for 

cooling mechanisms to take over.  When the circuit is underdamped, the actual 

current through the device will oscillate and, at some point, will even overshoot the Ib 

value.  Because we already bias the devices close to Ic, if Ib is high enough, the 

current through the device at the point of overshoot is likely to overshoot Ic, leading 

the entire device to go into global resistive state.  After that, the current never drops to 

a low enough value in order for superconductivity to be restored quickly, as we need 

to wait until the device cools back down to the operating temperature. 
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Figure 2.7 Comparison of a latching event (black curve), where the pulse rise-time is simply the 
relaxation time of the HEMT, and a typical photodetection event (red curve). 

 
 

 
 
Figure 2.8 Current flowing through the SSPD at the time of a photodetection event, t = 0.  In (b), 
Ib overshoots Ic at t = 5 ns, leading the device to latch.  Here, Ic = 18 μA. 
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If we consider the electrical model only, the difference in amplitude, for 

different hotspot resistances, stems from the time it takes for the current flowing 

through the meander to drop and redistribute into the read-out circuit.  In other words, 

for a given Rhs, current redistribution time increases with RL.  We know that for the 

hotspot to stop growing and cooling mechanisms to take over, the current through the 

device must drop to a certain value Ir << Ic [35].  The higher the load resistance, the 

longer it takes for that to happen.  This works against us because, for a given RL, the 

redistribution time for two hotspots will occur faster than that for a single hotspot, 

making the amplitude of the two comparable.  All of this we observed from PSpice 

simulations. 

If we assume that the switch in the SSPD electrical model opens at t = 0 (a 

photon is absorbed), and it develops an instantaneous hotspot resistance Rhs, the 

current will redistribute into RL with a time constant τ fall,1 = Lk /(RL + Rhs)  [23].  When 

there are two hotspots, τ fall,2 = Lk /(RL + 2Rhs).  Let us assume the switch closes as 

soon as the current drops to a value Ir, which happens twice as fast when there are 

two hotspots, as opposed to one.  This is illustrated in Fig. 2.9(a), which monitors the 

current drop through the SSPD.  The switch closes at t1 and t2 for a single and a 

double hotspot, respectively.  Figure 2.9(b) shows the resultant voltage pulses for the 

model above.  One can see that in this case, both pulses have the same amplitude, and 

only slightly different rise times. 

Assuming, however, that Rhs = 1.2 kΩ, then PNR will only work if the time 

the switch closes, and superconductivity is restored, is independent of Rhs.  A 
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simulation of this is shown in Fig. 2.9(c), where a single hotspot occurs at t = 0, and 

two simultaneous hotspots occur at t = 15 ns. Here, the amplitude of the double 

hotspot is ~ 1.5 times larger than that of a single hotspot. 

Finally, we also need to mention that in order to fully model the behavior of a 

SSPD integrated with a HEMT read-out, it is not enough to simply use the above 

electrical model, as there are many physical processes at play simultaneously.  The 

Joule heating occurs in parallel with cooling processes and the current redistribution 

[36] and, ultimately, a more complex "physical" model needs to be used.  This will be 

investigated further in the later chapters of this thesis.  
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Figure 2.9  (a) Current monitored through the SSPD during a photodetection event.  Here, the 
switch remains open in order to observe better what happens to the current.  (b) Comparison of 
two voltage pulses when the switch for a double-hotspot closes twice as fast.  (c) Comparison of 
two voltage pulses when the switch for a single hotspot (t = 0) closes as fast as that for a double-
hotspot (t = 15 ns). 
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Chapter 3 Dissipation and fluctuations in low-dimensional 

superconductors 

 

3.1 Introduction 

 In this work, we are dealing with low-dimensional superconducting structures.  

A structure is two-dimensional (2D) when one of the transverse dimensions is smaller 

than the Ginzburg-Landau (GL) coherence length ξ.  When both transverse 

dimensions are smaller than ξ, it is considered to be one-dimensional (1D).  Our 

SSPD structures fall into the 2D category at all temperatures below Tc, except very 

near Tc, where ξ, because of its temperature dependence, becomes comparable with 

the width of the stripe; while the thickness is always d ≤ ξ.  Because 1D and 2D 

superconductors do not behave the same way as bulk superconductors, we have to 

take that into consideration when discussing SSPD operation, as these effects not only 

affect photodetection, but also give rise to fluctuations and dark counts. 

 True long-range order is not possible in low-dimensional systems. The 

superconducting order parameter is a macroscopic, complex wave function, and is 

given by [37] 

 ψ(
r 
r ) = ψ(

r 
r ) expiθ(

r 
r ) , (3.1) 

 
where r is the spatial coordinate, θ is the position-dependent phase, and the superfluid 

(Cooper pair) density is   ψ(
r 
r ) 2.  When looking at the superconducting transition, in 
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1D and 2D superconductors, the transition region is broader than that in the bulk 

materials.  This broadening is shown schematically in Fig. 3.1 [38].  Above the 

Bardeen-Cooper-Schrieffer (BCS) mean-field transition temperature Tc, the transition 

is dominated by fluctuations in the magnitude of the superconducting order 

parameter.  This has the effect of increased conductivity before the actual transition, 

or paraconductivity, as discussed by Aslamazov and Larkin [39].  At Tc, the 

magnitude of the order parameter becomes well defined, but the resistivity does not 

drop directly to zero.  Now, the broadening of the transition is due to fluctuations in 

the phase of the order parameter.  When the phase fluctuates, it “slips” by 2π.  This 

happens in both 1D and 2D superconductors, via different mechanisms.  It is thought 

that truly 1D wires never actually reach the state of total zero resistance [40],[41]. 

 

 

Figure 3.1 Resistive transition in low-dimensional superconductors.  Above Tc, the magnitude of 
the superconducting order parameter fluctuates, while below Tc, the phase of the order 
parameter fluctuates until a second transition temperature is reached, in this case, at TBKT [38]. 
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3.2 Fluctuations in 2D superconductors: vortex-antivortex pairs 

 In 2D systems, destruction of the long-range order gives rise to the so-called 

topological defects in the order parameter. This phenomenon was first investigated by 

Kosterlitz and Thouless [42], and independently by Berezinskii [43] for superfluid 

helium films.  In the following, I will discuss how it applies to thin superconducting 

films in general, and our devices in particular, within the framework of the 

Berezinskii-Kosterlitz-Thouless (BKT) model.  The BKT model is applicable to 

phase transitions in a variety of 2D systems, such as planar spin systems, superfluid 

helium films, absorbed gases, etc.  Very thorough theoretical discussions, and how 

they apply to superconducting films, are given by [44],[45],[46] with a good review 

of both theoretical and experimental results by [47]. 

 In 2D superconducting films, the topological defects are excitations due to 

thermal fluctuations, and they come in the form of vortex-antivortex pairs (VAPs).  In 

fact, one can observe a second transition below Tc, which we call a BKT transition 

TBKT, below which the resistance goes to zero (see Fig. 3.1). In a temperature range 

between Tc and TBKT both bound and unbound vortex pairs can exist.  A vortex has the 

polarity of 2π (while an antivortex has polarity of -2π), and moving vortices 

(antivortices) produce dissipation in the temperature range between Tc and TBKT. 

Below the BKT transition vortices with opposite polarities combine into pairs, and 

the resistance goes to zero [47].  A transport current, however, exerts a Lorentz force, 

which reduces the VAP binding energy, and thermal fluctuations can subsequently 

break the VAPs [46].  The latter effect can manifest itself as a spontaneous transient 
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resistive state.  The VAPs are always present due to their finite excitation energies 

(on the order of kBT), and are analogous to electron-hole excitations in 

semiconductors [48]. 

The BKT model needed to be modified for superconducting films.  A true 

BKT phase transition can occur only if the energy of a bound VAP depends 

logarithmically on separation r, which in superconductors happens only when 

, where  is the bulk London penetration depth. [44].  For dr L /2 2λ<< Lλ r > 2λL
2 /d  

the binding energy becomes proportional to r−2, which means that for large 

separations the binding energy is strongly reduced, unbound vortices exist at all 

temperatures, and there is no true BKT transition.  Thus, in order to observe a BKT 

transition, one must be in the logarithmic regime, which limits the width of the film to 

.  For dirty superconductors, this condition is easily satisfied as  can 

be quite large, and it is satisfied in our experiments.  Additionally, 

dw L /2 2λ<< Lλ

4.4w ≥ ξ , which 

insures that the width of the film is wide enough for VAPs to propagate [49].  Finally, 

in superconductors, the transition is somewhat smeared because some unbound 

vortices exist at all temperatures due to finite size effects and the finite binding 

energy of VAPs in conjunction with thermal fluctuations.   

 

3.3 Fluctuations in 1D superconductors: phase slip centers 

Some of our devices start to approach a 1D limit at temperatures close to Tc.  

In this regime, the superconducting channel may be too narrow for vortices to 
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navigate, and we must consider phase-slip centers (PSCs) as a source for dissipation 

and fluctuations.  Theory of PSCs was first proposed by Little [50], and later 

developed by Langer, Ambegaocar, McCumber, and Halperin (LAMH) [51],[52].  

The LAMH model is very well developed, and extensive literature on both the theory 

and experimental results is available [40],[41],[51]-[53].  Here, I will only summarize 

the results.   

When a superconducting wire, or a stripe in our case, is biased at Ib < Ic, 

ideally the voltage drop between the two ends of the stripe is zero [54].  However, 

because of Johnson noise, thermal fluctuations, and possible nonuniformities in the 

width and thickness of the stripe, the voltage may not be exactly zero, though it will 

be extremely small.  Then, the relative phase of the order parameter at the ends of the 

wire increases at the Josephson rate  dθ /dt = 2eV /h , which is directly proportional to 

the voltage.  In order to maintain steady state, the phase will keep increasing, until 

instanteneously snapping back by 2π [53].  At that instant, the superconducting 

energy gap collapses at the core of a PSC.  We consider the size of the PSC to be 

given by ξ.  From the LAMH model, there are two types of PSCs: thermal, which 

exist near Tc, and quantum, which dominate at low temperatures. 

 Langer and Ambegaokar found the saddle-point energy for PSC activation by 

finding stable solutions to the 1D GL equations, of the form [54] 

ΔF =
8 2

3
Hc

2(T)
8π

Aξ(T) , (3.2) 
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where Hc is the critical magnetic field, and A is the cross-sectional area of the wire.  If 

the PSCs are thermally activated, they happen at a rate 

 ΓPSC ~ exp(−ΔF /kBT). (3.3) 
 
The activation energy ΔF decreases as (1− T /Tc )3 / 2  near Tc, which means that the 

probability of PSC activation grows exponentially with T.  For quantum PSCs, which 

quite controversially have been recently observed by [55]-[57], kBT  in (3.3) is 

replaced by   h /τGL , where τGL  is the temperature dependent GL relaxation time given 

by 

 
τGL =

πh

8k(Tc − T)
. (3.4) 

 
 

3.4 Resistive transitions 

 In our devices, the resistive transition can be investigated in three different 

temperature regions.  Above Tc, the excess conductivity (paraconductinvity) in a 

superconductor is derived by Aslamazov and Larkin [39]: 

 
σ 2D =

1
16

e2

hd
Tc

T − Tc

 (3.4) 

 
for the 2D samples, and  

 
σ1D =

π
16

e2

hwd
ξ0

Tc

T − Tc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3 / 2

 (3.5) 

 
for  1D samples, where ξ0 is the GL coherence length at T = 0. 
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3.4.1 Two-dimensional nanostripes 

Below Tc, in the framework of the BKT model, the resistance due to free 

vortices is directly proportional to the free vortex density nf, and is given by [44] 

RVAP (T) = 2πRNξ 2(T)n f (T) , (3.6) 

where RN is the normal-state resistance, and, one can find nf by solving the Kosterlitz 

recursion equations [44],[45].  Finally, at temperatures TBKT < T < Tc, the resistance is 

given by Halperin and Nelson [44]: 

RHN =10.8bRN exp −2 Tc − TBKT

T − TBKT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
,  (3.7) 

 
where b is a nonuniversal constant of the order unity.  This temperature dependence 

may be difficult to observe in samples with Rs less than 1 kΩ, as the transition region 

ΔT = Tc − TBKT  is quite small in such devices.  The ratio TBKT /Tc  is given by [46] 

 TBKT /Tc = [1+ 0.173Rse
2ε /h]−1, (3.8) 

 
 where ε is a renormalization factor on the order of unity to take into account VAPs 

with smaller separation interacting with VAPs with larger separation.  Given that the 

average Rs of our devices is ~ 800 Ω, the transition region is ΔT < 0.5  K.   

 Below TBKT, and in the limit of zero current, the dissipation (free vortices) is 

due to finite-size effects.  Then (3.6), in the limit of large length scale, can be 

rewritten as [47] 

RVAP = 2πRN
T − TBKT

Tc − TBKT

− 2
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

ξ(T)
w

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2(TBKT −T )
TC −TBKT   (3.9) 
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In order to achieve current-induced unbinding of VAPs, where the Lorentz 

force has to exceed the attraction force of the pair, a certain threshold current Ith must 

be surpassed.  This Ith increases with decreasing temperature, and is given by [38] 

  Ith (T) = 2eK(lm )kT /h ,  (3.10) 
 
where K(lm) is the stiffness constant from the Kosterlitz recursion equations, bounded 

by the width of the film, and is given by K(lm ) = 2 /π +1/π ln(w /ξ).  Then, Ith can be 

rewritten as [58] 

  
Ith (T) ≈ 1+ 2 TC − T

TC − TBKT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2ekT
πh

.  (3.11) 

 
In this regime, the resistance due to unbinding of VAPs is predicted to be [45], [58] 

RVAP ≈ 4RN
TC − T

TC − TBKT

I
Isc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2(TC −T )
TC −TBKT

,  (3.12) 

where   Isc = wekTBKT /hξ(T) is the scaling current. 

 

3.4.2 One-dimensional nanowires 

 In the 1D regime, the resistive transition is dominated by thermally activated 

PSCs.  It can be found that in the limit of low bias currents, the resistance is [40],[41], 

[52] 

RPSC =
2hL

πe2ξ(T)
1−

T
Tc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ΔF
kBT

exp −
ΔF
kBT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,  (3.13) 

 
and the activation energy can be written as [59] 
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ΔF ≈ 0.4kB
hw

2e2ξ(T)
(Tc − T),  (3.14) 

 
where ξ has the temperature dependence of ξ = ξ0(1− T /Tc )−1/ 2 . 

 

 

3.4.3 Resistance measurements 

 Five different structures were studied extensively for resistance 

measurements, as well as IV characteristics to be presented later: four nanobridge 

structures with different widths and a SSPD.  Their geometries and device parameters 

are summarized in Table 3.1.   

 

Table 3.1Device parameters 
Type of structure Nanobridge SSPD 
Device number B1 B2 B3 B4 E11 
Width w (nm) 440 330 130 150 100 

Thickness d (nm) 4 4 4 4 4 
Length L (μm) 5 10 10 10 500 

Rs (Ω/sq), T = 20 K 890 670 900 720 700 
Tc (K)  13.36 11.37 9.87 -- 9.98 

TBKT (K) 12.88 11.06 9.51 -- -- 
ε 1.05 1.01 1.04 -- -- 

 

Figure 3.2 presents a semi-log plot of RT dependence for the B1 [Fig. 3.2(a)] 

and B2 [Fig. 3.2(b)] nanobridges.  A lock-in technique described in Section 2.1 was 

implemented for these measurements.  RT measurements for devices B3 and B4 were 

not available. 
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Figure 3.2 Resistance versus temperature measurements for devices (a) B1 and (b) B2. The blue 
curves are fits from (3.7), and green curves are fits from (3.13).  The insets show the 
measurements on a linear scale, with fits from (3.4).   
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Above Tc, the residual conductivity from (3.4) can be used to fit all our 

experimental data quite well, with Tc being the only free parameter.  The resistance 

curve in this case is given by RAL = RN (1−σ 2DρN ), where ρN  is the normal-state 

resistivity. The values of Tc derived in such a way for all four devices are listed in 

Table 3.1.  A slight discontinuity feature around T = 13.7 K in Fig. 3.2(a) is likely due 

to the fact that the contacts switch into superconducting state before the actual 

nanobridge structure. 

Equation (3.8), by setting ε = 1, can give us the approximate values of the 

BKT transition, also listed in Table 3.1.  It is interesting to compare the TBKT values 

obtained this way with the values extracted from the fit of the transition using (3.7), 

also shown in Fig. 3.2, in the temperature range TBKT < T < Tc.  Comparing the two 

different TBKT values for devices B1 and B2, we can find the renormalization factor ε.  

I must emphasize that the equations for the BKT model were derived for very large 

length scales, and we have a much better fit from (3.7) for device B1, which is wider 

than B2. 

 Finally, at temperatures below TBKT, we can observe resistive tails in both 

samples.  These are somewhat more difficult to explain.  An attempt was made to 

check whether this is the broadening of the transition by vortices, either due to finite-

size effects, or current induced VAP unbinding, given by (3.9) and (3.12).  However, 

both of equations predict a transition that is only slightly broadened, and not to the 

extent which is observed here.  At low currents, we can fit these data with the LAMH 

model.  These structures are quite wide however, and the existence of PSCs, at first 
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glance, seems unlikely.  Fitting these resistive tails with (3.13), and using L as a free 

parameter returns L ≈ 240 nm for device B1.  Using (3.2) and the experimental value 

of Hc for NbN, we can calculate w ≈ 19 nm.  A plausible explanation is that in our 

NbN stripes, there are local constrictions, or inhomogeneities, which have a lower Tc 

then the rest of the structure, and such regions activate PSCs [60]. 

Figure 3.3 shows the RT transition for device E11.  This time the transition is 

completely dominated by the PSCs, as shown by the green curve in the figure.  We 

set ξ0 = 5  nm, so that Tc was used as the only free parameter, which we found to be 

Tc = 10.7 K. Given that the Aslamazov-Larkin fit gave Tc = 9.98 K, there is a 

discrepancy of ~ 7%, still within a reasonable range.  Equation (3.7) from the BKT 

model is also plotted for comparison (blue curve), and the Aslamasov-Larkin fit is 

shown in the inset.  It is not surprising that the PSC model fits for over five orders of 

magnitude, as this device, having the narrowest width, actually approaches the 1D 

limit at temperatures near Tc.  Similar findings were presented in [60]. 
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Figure 3.3 Resistance versus temperature measurements for devices E11. The green curve is a fit 
from (3.13), with (3.7) plotted for comparison (blue curve).  The inset shows the measurements 
on a linear scale, with a fit from (3.4). 

 

3.5 Current-voltage characteristics 

We can more directly probe the logarithmic interaction of two vortices in a pair 

by looking at dc IV characteristics near TBKT.  According to the BKT model 

[44],[47],[48], the voltage across the film is proportional to the power of current 

V ∝ Iα(T ) , where α is a temperature-dependent exponent. α decreases linearly with 

increasing temperature until TBKT is reached, at which point the IV curves stop being 

nonlinear and become ohmic and α(TBKT) = 3, while above TBKT the exponent makes a 

sharp jump to α = 1, where the superfluid density jumps to zero, and the curves become 

ohmic.  
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 Figure 3.4(a) shows a log–log plot of a family of IV curves, taken for device 

B3 over a large range of currents and voltages, using a stable dc current source 

(Keithley 220).  One can see that our IV characteristics are nonlinear for higher 

currents, as predicted by the BKT model.  However, there is an ohmic tail at very low 

currents.  This ohmic tail can be an artifact due to the current source noise, but is 

more likely due to unbound VAPs that seem to exist in our devices at all temperatures 

[61].  Since we used a μ-metal shield around the sample, which reduced the 

background (Earth) magnetic field by about two orders of magnitude, the unbound 

VAPs are most likely related to the finite-size effects [47],[62].  The IV 

characteristics obtained for all other devices revealed similar results. 

We have extracted α from each experimental IV curve for each device and 

plotted it as a function of temperature, as shown in Fig. 3.4(b) for device B3.  

Because α was obtained in the limit of high currents, where the IV characteristics 

were nonlinear, there is no “jump” from α = 3 to α = 1, which should be observed in 

the limit of low currents. Again, this smooth transition may be attributed to unbound 

VAPs, as was discussed above.   
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Figure 3.4 (a) IV characteristics different temperatures near the superconducting transition for 
device B3.  From left to right, the temperatures are: 10.06, 9.53, 9.27, 9.17, 9.07, 9.02, 8.88, and 
8.68 K.  (b) Exponent α as a function of T.  The BKT transition occurs at T = 9.17 K. 

 

 From the IV characteristics, device B3 has TBKT = 9.17 K.  Using (3.8) and the 

measured Tc = 9.87 K, we get the renormalization factor ε = 1.04, fitting with BKT 

model very well. 

 Finally, we can look at transport properties by measuring IV curves far below 

Tc, as shown for device B4 in Fig. 3.5, at temperatures T = 2.3 – 9.0 K.  The steps in 

the IV curves, with excess current, are typically associated with PSCs [40].[41],[60], 

though alone are not a proof.  We can argue, however, that in this particular device, 

the Ic is nearly three times smaller than in a typical device of similar dimensions, 

which indicates the existence of constrictions in the width and/or thickness of the 

stripe.  The current exceeds Ic in the constrictions first, and, as described by Tinkham 

[54], stable superconducting solutions no longer exist, a finite electric field appears, 

and the superconducting order parameter collapses.  Superconductivity is restored 
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after the phase slips by 2π, and each PSC results in a voltage step.  These voltage 

steps are not unique to device B4, but are quite common in most of our devices, and 

are expected to exist in devices with reduced Ic’s. 

 

 

Figure 3.5 Current-voltage characteristics measured for device B4 at different temperatures.  
The inset shows the curve at T = 4.2 K once again, to demonstrate that the voltage steps have 
excess current (slope does not go back to the origin).  The curves are also hysteretic. 

 
 

3.6 Summary 

 Given all the evidence presented above, I would like to conclude that 

dissipation due to both VAPs and PSCs exists in our devices.  Depending on the 

parameters of a particular device and the operating temperature, one process can 

dominate over another.  For example, the RT measurements show that the resistive 

transition is dominated by PSCs in the narrower structures, even though the nonlinear 

IV characteristics reveal that VAPs are also present.  Besides the stripe constrictions, 
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inhomogeneities, and defects in the substrate, which translate to the NbN film, can 

have a significant effect on the transport properties.  Thus, fluctuations and 

dissipation are dependent not only on the sample’s dimensions, but also on its quality.  

Typically, even the wider structures where VAP processes dominate, are not immune 

to PSCs near Tc. 
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Chapter 4 Dark counts: experimental results and 

interpretation 

 
 

In Chapter 1, we discussed that the SSPD time resolution is limited by the 

large value of Lk of the narrow, thin, and ultra-long superconducting stripe.  This 

implies that no matter what causes the transient resistive state, whether it is a single 

photon, a pulse containing 10 photons, or a dark count, the response pulses are 

indistinguishable.  Understanding the physical origin of dark counts in our SSPD 

nanostructures is important not only for the purpose of better operation of our devices 

(sensitivity depends on the dark count rate), but also to further our understanding of 

the physics of the photodetection mechanism in 2D superconducting stripes and 1D 

nanowires. 

 

4.1 Experimental results 

The experimental setup for dark-count measuremens was discussed in Chap. 

2, and the NbN nanobridges tested in these experiments were 3.5-nm and 4-nm thick, 

the width ranging between 100 and 500 nm, with10 μm length.  The meandering 

stripes of the measured SSPDs were 4 and 10 nm thick, 100 to 150 nm wide, and up 

to 500 μm long.  Table 4.1 summarizes the parameters of the measured devices: three 
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different SSPDs (samples A, B, and C), and nanobridges (D, E, F).  Most structures 

fall into the 2D limit at all temperatures, as their thickness is much smaller, while the 

width is much larger than ξ, except sample F, whose thickness is on the order of ξ. 

 

Table 4.1 Parameters of measured devices 

Device # A B C D E F 
Thickness d (nm) 4 4 10 4 4 3.5 
Width w (nm) 120 120 150 170 100 500 
Length L (μm) 500 500 110 10 10 10 
Sheet resistance Rs 
(Ω/sq) at T = 20 K 700 660 550 600 900 900 

Tc (K) 9.0 9.3 10.0 10.2 9.8 10.3 
QE at 1.3 μm, % 0.3 8.0 -- -- -- -- 
 

 

Individual dark-count pulses, representative for simple nanobridges (E and F) 

and a long meanders (A and B), measured at different temperatures are shown in Figs. 

4.1(a) and 4.1(b), respectively.  The pulses recorded for the bridges exhibited the 

main peak with full-width-at-half-maximum (FWHM) of approximately 250 ps for F 

and 500 ps for E [inset in Fig. 4.1(a)].  On the other hand, voltage transients generated 

by SSPDs were in the several-ns-range (FWHM = 2.5 ns), due to the high Lk of the 

long meander structure [18],[27].  The amplitudes of dark count pulses for both types 

of structures were temperature dependent, which stems partly from the temperature 

dependence of the critical current density Jc, and will be discussed below. 
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Figure 4.1 Dark-count pulses for (a) device F and (b) device B at temperatures of 2.0 K (solid 
black line), 4.5 K (gray line), and 7.0 K (dotted line).  The inset in (a) shows a typical dark-count 
pulse from device E, while the inset in (b) corresponds to device A. 

 

4.2 Early data and discussion 

Data for the spontaneous pulse-counting rate Rdk for sample A as a function of 

the reduced bias current Ib/Ic are shown in Fig. 4.2.  We were able to observe an 

activation-type behavior of Rdk ∝exp(Ib /Ic )  within six orders of magnitude.  To 

analyze the correlations between the device geometry and the Rdk behavior, we 

decided first to follow an approach developed in the LAMH model for 1D 

superconducting wires, as discussed by Tinkham [54] (also in Chap. 3).  The LAMH 

model predicts that a voltage across a superconducting nanowire, due to PSCs, is  

 
V =

hΩ
e

e
−

ΔF
kT sinh hIb

4ekT
, (4.1) 

where Ω is the barrier attempt frequency found by McCumber and Halperin [52] to be 
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Figure 4.2 Dark counting rate dependence on the bias current for device A, in the temperature 
range between 100 mK and 6.4 K.  The solid lines are fits according to the PSC model, with R0 
and I0 as fitting parameters.   

 

Ω =
L
ξ

1
τGL

ΔF
kT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1/ 2

. (4.2) 

 
 In our case of Ib close to Ic, the hyperbolic sine function in (4.1) can be 

approximated and written as 

 
V =

hΩ
2e

e
−

ΔF
kT e

I b

I 0 , (4.3) 

where I0 is the characteristic current given by 

I0

T
=

4ek
h

=13nA /K . (4.4) 

 Following the above approach and based on the experimental data shown in 

Fig. 4.2, we first fit our measured dark counts as an exponential function of I, as 

shown by solid lines in Fig. 4.2, in the following form: 

Rdk (I) ∝ R0e
I b / I 0 , (4.5) 
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where the prefactor R0, based on (4.2) and (4.3), can be written as  

R0 = Ω × exp −ΔF
kT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ =

L
ξ

1
τ s

ΔF0

kT
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

1/ 2

exp −ΔF
kT

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ .  (4.6) 

Equation (4.6) corresponds to thermally activated PSCs that are observed near the 

superconducting transition. 

 During the course of our studies, we have collected a very large number of Rdk 

dependencies on Ib/Ic in the temperature range between 1.8 K and 7 K.  Next, we 

extracted the parameters I0 and R0 from our experimental data and, for selected 

devices, plotted them as a function of T. 

 Figure 4.3 presents the measured I0/T values versus T for samples A, B, C, and 

D.   We note that our results strongly deviate from the 1D LAMH model, where I0/T 

is expected from (4.4) to be a temperature-independent constant.  Our data, however, 

converge to the predicted 1D limit of 13 nA/K at temperatures above 7 K, where the 

width of our samples starts to approach a quasi-1D limit.  At the same time, the 

deviation from this limit is getting higher as the temperature decreases, and is also 

higher for device D, which has a stripe wider than the other three devices.  The I0/T 

dependence at low temperatures in the QPSC limit should follow the 1/T dependence, 

which indeed it does, as we see in the inset of Fig. 4.3.  The latter may be evidence in 

favor of quantum fluctuations, though we cannot rule out simple coincidence.   
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Figure 4.3 Characteristic current for devices A, B, C, and D, extracted from dark counting rate 
data, as a function of temperature.  The inset shows dependence on 1/T for device B. 

 

 Figure 4.4 compares the R0’s for devices A, B, C, and D.  As in the case of 

I0/T, the prefactors converge at high temperatures, as predicted by (4.6) for devices 

with the same L.  At low temperatures, however, the R0’s change dramatically, which 

means that the PSC interpretation of the data at low temperatures is likely incorrect, 

which is not surprising given that our devices are all in 2D limit except for 

temperatures approaching Tc.  Thus a different model is needed to describe dark 

counts at low temperatures.   
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Figure 4.4 Prefactor R0 for devices A, B, C, and D, extracted from dark counting rate data, as a 
function of temperature.  Solid lines are guides to the eye. 

 

4.3 Vortex-antivortex unbinding approach  

Devices E and F were later measured for dark counting rate as a function of 

bias current in a range of temperatures, from 2 to 8 K.  Figure 4.5 shows some of 

these data for device F, this time, however, we used a VAP unbinding model derived 

by Engel et al. [62] (solid lines) to fit the new data.  We note that the agreement is 

excellent and extends over six orders of magnitude. 

In the sample, VAPs orient themselves perpendicular with respect to Jb with 

minimum binding energy 

U =
A(T)
ε(l j )

(l j −1) + 2μc , (4.7) 
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Figure 4.5 Dark counting rate dependence on bias current for sample B, where the solid lines are 
fits according to (4.9). 

 

where l j = ln(2.6Jc /J)  is the current scale, ε(l j ) is the renormalization factor of the 

order unity due to the screening of larger VAPs by the smaller VAPs, μc is the core 

potential, and finally Jc and J are the critical current density and the applied current 

density, respectively.  Here, A(T) is the vortex interaction parameter, given by 

                                                   
  
A(T) =

π 2h

2e2Rs

Δ(T)tanh[Δ(T) /kT].                                       (4.8) 

 
If the unbinding process is activated thermally, then Rdk, in [62] denoted as ΓVAP , is 

proportional to exp(-U/kT), and is given by  

ΓVAP = ΩVAP exp A(T)
ε(l j )kT

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ×

J
2.6Jc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

A(T )
ε ( l j )kT

.  (4.9) 

Here, A(T) was calculated from device parameters, ΩVAP  is the attempt frequency and 

was used together with ε(l j ) as the two fitting parameters which are summarized for 

devices F and B in Figs. 4.6(a) and 4.6(b), respectively. 
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Figure 4.6 Fitting parameters ΩVAP (left axis) and ε(l j )  (right axis) from (4.9) for (a) device F 
and (b) device B. 

 
The attempt rate, as expected, increases with increasing temperature.  The 

renormalization factor ε(l j ), however, decreases with increasing temperature, which 

is not consistent with theory.  VAPs are thermal excitations, and at higher 

temperatures there are likely to be more of them present than at T << Tc, making ε(l j ) 

increase with temperature [46],[63] in the limit of zero current.  The renormalization 

factor should, however, also have a weak linear dependence on the bias current, 

which we did not take into account, as our fits were very good assuming a constant 

ε(l j ).  We must admit, however, that our measurements were done in the limit of high 

currents, making the theoretical derivations not fully applicable to our results. 

 

4.3.1 Pulse amplitudes 

 In the presence of a bias current, the binding energy of VAP is reduced to [64] 
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U(J) ≈ 2πK0 ln(Jc 0 /Jb ), (4.10) 

which is comparable with kBT.  Here 2πK0 = ΦOdξJc0  is the vortex energy scale, 

where Jc0 is the mean-field critical current density and ΦΟ is the flux quantum.  Thus, 

a voltage that corresponds to the depairing of a VAP, as a function of current and 

temperature, is given by 

V (J,T) ≈
ΦO

e
eξ(T)Jc0(T)ln(Jc 0 /Jb ).  (4.11)  

 Figure 4.7 shows the amplitudes of dark voltage pulses (solid dots) versus 

temperature for devices F [Fig. 4.7(a)] and B [Fig. 4.7(b)].  Assuming that Jc0(T) is 

the experimentally measured quantity, and keeping Jc0/Jb ratio constant, we fit the 

amplitudes of the voltage pulses versus temperature for devices B and F with (4.11) 

(solid line).  ξ(T) was extracted from experimental values of V(T) and Jc(T), and by 

extrapolating the value of ξ to T = 0, we found that ξ(0) = 7 nm and 6.1 nm for 

devices B and F, respectively.  The ξ(0) values are within a reasonable range of 

values for NbN reported in literature [65], [66], supporting our interpretation.  The 

dotted lines in Fig. 4.7 show what the amplitudes of dark-count pulses would be if 

they were simply equal to the bias current times the load resistance (RL = 50 Ω), 

which clearly is not the case here, although they do look proportional, because (4.11) 

has a direct dependence on the bias current. 
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Figure 4.7 Dark-count pulse amplitudes versus temperature for (a) device F and (b) device B.  
The solid line is a theoretical fit from (4.11), while the dotted line represents what would be a 
simple resistive behavior. 

 
 

4.4 Summary 

 In Chapter 3, I outlined the evidence for the existence of VAPs in our devices.  

Dark counts happen at Ib’s not far below Ic, and it stands to reason that the current-

induced VAP unbinding is a likely process.  By measuring Rdk’s, we demonstrated 

that this is indeed what happens, and in wider structures, it seems to be the dominant 

source of fluctuations. 

 However, as we stressed in the Summary of Chap. 3, we cannot totally 

discount the presence of PSCs in our devices, especially at temperatures approaching 

Tc, where the narrowest (w = 100 nm) NbN stripes start to approach a quasi-1D limit.  

Because the NbN stripes are not perfectly uniform in width, some constrictions must 

exist, and, since we bias our devices close to Ic, PSCs are very likely to happen at the 

constriction sites.  The superconducting energy gap at those sites will collapse, and 

the phase of the order parameter will slip by 2π at a certain rate, and this rate 
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increases exponentially with Ib.  We also have evidence for this from our Rdk values, 

and again from the steps in IV characteristics presented in Chap. 3.  I then conclude 

that we have a superposition of dark counts due to both current-induced VAP 

unbinding, and PSCs, in our samples.  Depending on the variables such as sample 

width, width/thickness uniformity, and temperature, one process will dominate over 

the other.  Given our typical SSPD operating temperatures (T ≤ 1/2Tc), in the high-QE 

devices (high QE implying uniformity in stripe width and thickness), VAP unbinding 

should dominate over PSCs, while dark counts in our early, less-perfected 

technologically SSPDs are likely to be dominated by PSCs. 
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Chapter 5 Hotspot dynamics 

 
 

5.1 Hotspot model 

I have already outlined in Chap. 1 that the SSPD photoresponse is based on 

hotspot formation in a constricted volume (sidewalks) of a superconducting nanowire.  

Here, we provide a much more detailed discussion and show that the SSPD operation 

principle is actually due to a supercurrent-enhanced resistive transition resulting from 

hotspot formation [10],[21], shown schematically in Fig. 5.1.  as before, our 

phenomenological model assumes that the device is maintained at a temperature far 

below Tc, and is biased with current close to the NbN stripe Ic.  After a photon of 

energy hν  is absorbed, it breaks a Cooper pair, generating a highly excited 

quasiparticle, which, following either the R-T or 2-T models (both described in Chap. 

1), through a cascade of secondary e-e and e-ph interactions, leads to a large number 

of NQPs forming a local hotspot region of suppressed/destroyed superconductivity.   
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Figure 5.1 Hotspot model for single-photon response. 

 

Next, the hotspot expands, forcing the bias supercurrent to be expelled from 

its volume and concentrated near the edges, or "sidewalks", of the stripe.  When the 

current density in the sidewalks exceeds the critical value, superconductivity is 

locally destroyed due to formation of PSCs (see Chap. 3 for background on PSCs), 

and a resistive region is formed across the width of the stripe.  This resistive region 

gives rise to a voltage signal.  After the photon excitation, the hotspot continues to 

grow due to Joule heating.  Once the current through the SSPD drops and 

redistributes into the read-out circuit, the hotspot can start to decrease due to 

recombination and out-diffusion of quasiparticles, and eventually collapses.  The 

superconductivity in the entire stripe is restored and the detector is ready to register 
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another photon.  We note that the presented mechanism can lead to a macroscopic 

voltage signal only in nanostructured superconducting stripes, which have d smaller 

and w comparable with the hotspot dimensions. 

5.1.1 Hotspot radius 

 In an infinitely large superconducting film, we can calculate the maximal 

hotspot radius rm [21]: 

rm =
M

2Dτ thdNoΔ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2
1

π 4NoΔ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 3

ln 1+
π 2M

Dτ thdNoΔ

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ,   (5.1) 

where M = ζhν /Δ  is the efficiency of NQP multiplication, with the material-related 

parameter ζ <1, which accounts to the energy losses by subgap phonon generation in 

the superconductor.   

 In the case of our SSPDs, where w = 100 nm, and photon wavelength is in the 

NIR region, 2rm < w.  Then, the device photoresponse is a trade-off between the bias 

current and hotspot diameter, related by the criterion 2rm = w(1− Jb /Jc ), where Jb/Jc 

is the reduced current density of the superconducting stripe, or the minimum bias 

current needed to produce a photoresponse signal in the SSPD for a hotspot of 

diameter 2rm.  In other words, the detector’s sensitivity is enhanced by the 

supercritical current self-induced Joule heating of the still superconducting  sidewalks 

around a comparatively small hotspot. 

 The criterion given above implies that there should be a cut-off in the QE 

below some value of Jb/Jc.  Figure 5.2 shows the QE dependence on the reduced 

current bias for several temperatures, where instead of zero QE below the cut-off, we 
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see a change of slope where QE starts to drop off much faster with the Jb/Jc decrease.  

This is residual QE is likely due in part to the nonuniformities in the stripe, where the 

parts of the stripe with w < 100 nm are still activated for photodetection even below 

the “global” Jb/Jc cut-off, and partly due to fluctuation-enhanced photodetection.  Let 

us set aside those effects to be discussed later, and first focus on the hotspot dynamics 

and temperature effects. 

 

Figure 5.2 SSPD quantum efficiency as a function of bias current at different ambient 
temperatures. 

 

From the data in Fig. 5.2, for each T, we calculated the minimum hotspot 

radius needed to produce a photoresponse by using the values of the Jb/Jc threshold 

where the slope change occurs in QE.  These are presented in Fig. 5.3 (closed circles), 

compared with the curve from (5.1) (red curve), where Δ is assumed to be 

temperature dependent, but independent of bias current, and ζ = 0.75, a value 
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obtained for 700-nm-wavelength photons from previous measurements [67].  Note 

that according to (5.1), rm increases slowly with T, diverging near Tc.  The measured 

values of rm, on the contrary, decrease monotonically with increasing T, while 

simultaneously giving almost twice larger values than those calculated from (5.1). 

 

Figure 5.3 Hotspot radius extracted from QE measurements as a function of temperature (closed 
circles), and rm calculated from (5.1) (red curve). 

 
As presented in Fig. 5.4, our model also proposes that the rm – radius hotspot, 

which consists of the QP core, is surrounded with the LE – wide ring of weak 

superconductor, where Δ is suppressed by the electric field penetration into the 

superconductor at the boundary with the normal spot (N-S boundary) [21].  Here, 

 is the penetration length of electric field at the boundary, which affects 

the dissipation of the bias current in the superconductor, as well as the time of the 

LE = DτQ( )1/ 2
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hotspot evolution across the width of the superconducting stripe, and τQ is the 

relaxation time of the charge imbalance.  Relaxation of the charge imbalance depends 

on Ib, and for the currents close to Ic and near Tc, it is given by [68] 

  
τQ = 0.55 hτ eTc

kB (Tc − T)2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

,                                 (5.2) 

where τe is the inelastic electron scattering time at the Fermi surface.   

 

Figure 5.4 Cross-section of the SSPD nanowire, showing the hotspot generated by a single 
photon.  The original hotspot consists of a QP core with diameter rm.  Due to QP out-diffusion 
and electric field penetration at the normal (hotspot) boundary with the superconductor, the 
total hotspot diameter is now 2(rm + LE).  The supercurrent, denoted by the arrows, is now 
expelled from the hotspot region into the stripe edges. 

  

The hotspot evolution must also depend on the “healing” processes by the 

means of fast diffusion of highly-energetic QPs from the resistive area, and cooling 

down of the QPs due to sharing their energy surplus via e-ph interactions.  The 

characteristic healing length of the hotspot is given by Lh = (Dτ )1/ 2 , where 
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τ = τ e− ph + τ esce /cph  is the effective electron cooling time.  Thus, in principle, 

effective hotspot radius should be r = rm + LE − Lh .  When the healing length 

Lh > (rm + LE ) , the supercritical current state in the sidewalk disappears, and the 

detector is unable to register the absorbed photon.  In the temperature range of 

interest, LE and Lh vary only weakly with T, and adding LE - Lh to the red curve in Fig. 

5.3 would move it up, depending on the LE  > Lh condition.  This corrects the 

amplitude prediction, but still does not give us a good temperature fit for the data 

extracted from Fig. 5.2, thus, an alternative approach is needed. 

 

5.2 Revised hotspot model: heating effects and resistive domain wall 

propagation 

 In this section, I demonstrate that the heating effects, namely Joule heating, 

play an important role in the SSPD photodetection mechanism.  Let us assume a 

stepwise heat-production model as discussed by Gurevich and Mints [69], where the 

resistance R = 0 for T < Tr, and R = Rhs for T > Tr, where Tr is the temperature at 

which some part of our SSPD nanostripe stops being superconducting.  For the sake 

of simplicity, let us make the following assumptions: Jc(T) decreases linearly with 

increasing T, the ρN, along with the heat-transfer coefficient h from the NbN film to 

the substrate, are independent of temperature, and Tr ≈ Tc. 

 When Ib < Ic, in the absence of inhomogeneities and/or external perturbations, 

the thin superconducting film will stay superconducting.  This is not typically the 
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case, however, as in our very long and narrow SSPD stripes, inhomogeneities, such as 

constrictions and nonuniformities in the width or thickness, and/or defects in the film 

material and sapphire substrate are likely to be present.  The measured Ic is then 

determined by the narrowest and thinnest sections of the stripe.  These same sections 

are also the most sensitive to both thermal fluctuations and external perturbations.  As 

Ib is driven close to Ic, these constricted sections start switching to the resistive state 

first. 

 We can define a parameter αS , called the Stekly parameter, as the ratio of 

characteristic heat generated in the normal state, to the heat transfer into the substrate 

[69]: 

αS =
ρJc

2(T0)dp

h(Tc − T0)
.             (5.3) 

Here, T0 is the bath temperature, and dp = wd /(2w + 2d) .  Self-heating is important 

when αS  > 1, and is negligible for αS  << 1.  Thus, taking into consideration the 

temperature dependence of Jc, αS  decreases with increasing T0, and self-heating 

becomes unimportant at temperatures close to Tc, vanishing at Tc. 

 Consider IV characteristics of a typical SSPD, in the fixed-voltage regime, 

shown in the Fig. 5.5.  The current is increased while the voltage drop is zero up to Ic, 

where the narrowest/thinnest portion of the stripe switches to the normal state.  The 

normal domain grows to a resistance larger than the 50-Ω load, and Ib through the 

SSPD drops to a value I1, and becomes stable.  The current through the SSPD can 

then increase again, until a second normal domain appears, and the current drops 
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again to a value I2.  This process continues until the domains overlap, normal-

superconducting (N-S) boundaries disappear, and the entire stripe becomes normal.  

When we finally start decreasing the current, the power dissipated by Joule heating is 

high enough to keep the SSPD in the normal state until Ib = Ir, at which point the 

superconducting state is recovered.  Thus a hysteretic IV curve behavior is observed. 

 

Figure 5.5 Typical SSPD current-voltage characteristics at T = 4.2 K. 

 
 We associate Ir with the minimum normal-zone propagating current Ip [69], so 

that for a long stripe, Ir ≈ Ip and is given by Ip =
Ic

2αS

( 1+ 8αS −1) , for αS  ≥ 1.  

Extracting Ip from our hysteretic IV curves, we were able, in turn, to extract αS  at 

different temperatures, and fit the data with (5.3) using only one fitting parameter, h = 

105 W/m2K, of the same order as that calculated for NbN devices by Yang et al. [36].  

This is presented in Fig. 5.6. 
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Figure 5.6 Stekly parameter αS  as a function of temperature. 

 
 Thus, the propagation of the N-S boundary of the hotspot in a 

superconducting thin film occurs at Ip < Ib < Ic.  A photon absorbed in a SSPD is a 

perturbation, and a hotspot appears at the photon absorption site, with the N-S 

boundary propagating outward (see Fig. 5.4).  The velocity of N-S boundary passes 

through zero at Ib = Ip, increases as I increases, and becomes maximum at Ib = Ic.  

Assuming that αS  for our NbN film is ~ 7, which is true for typical SSPD operating 

temperatures, then Ip ~ 0.43 Ic, which indicates that self-heating due to a bias current 

is expected even at Ib << Ic, and the hotspot will keep growing until the current 

through the SSPD drops below Ip. 

 For a thermally insulated superconductor, where the heat transfer from the 

film to the substrate coefficient is h → 0, the N-S boundary propagation velocity v, in 

the limit of αS  >> 1, is given by [69]: 
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v =
Jc

ce + cph

σ thρ
Tc − T

i
1− i

,                       (5.4) 

where σth and ρ are the thermal conductivity and resistivity, respectively, at the 

superconducting transition of the SSPD, and i = Ib/Ic.  Figure 5.7 shows the 

dependence of v on reduced Ib at T = 4.2 K, with Jc = 3×1010 A/m2, σth = 1 W/m K 

[21], ρ = 2.4×10-6 Ωm, ce = 2400 J/m3K, and cp = 9800 J/m3K [21].  At i = 0.9, v = 

5500 m/s, which seems rather high, but reasonable as long as this value is lower than 

the speed of sound in NbN. 

 

Figure 5.7 Resistive domain propagation velocity as a function of reduced bias current, at T = 4.2 
K. 

 
 Using the same values of i which were used to extract hotspot radius from QE 

measurements shown in Fig. 5.2 (see also Fig. 5.3), we were able to fit these data 

using (5.4), as presented in Fig. 5.8.  Multiplying the v by τth, and using a single 

fitting parameter of 0.34, we get the values of rm (black curve) which are in very good 

agreement with the data.  For comparison, Fig. 5.7 also shows  rm calculated from 
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(5.1).  Furthermore, if we multiply v = 5500 m/s calculated above by our fitting 

parameter of 0.34, we get a much more reasonable value of resistive domain velocity, 

v = 1870 m/s.  Thus, because v has a strong dependence on Ib near Ic at T ≤1/2Tc , 

where SSPDs are typically operated, the bias current dependence dominates over the 

temperature dependence shown in Fig. 5.3.  Also, because of the linear dependence of 

v on the Jc, which has temperature dependence given by Jc (T) ≈ Jc (0)(1− T /Tc )3 / 2, 

the N-S boundary velocities for the same i are higher at lower temperatures, giving 

rise to a larger hotspot radius.  Thus, indeed, the device QE should increase with the 

ambient T decrease even at temperatures T/Tc < 0.5, where the superconducting 

parameters such as ξ, Δ, and λL, are practically independent of T.  Indeed, for the 

same i = 0.9, the QE at T = 2.2 K is 4.3 times larger than that at T = 4.6 K.   

 

Figure 5.8 Hotspot radius with a fit using (5.4) (black curve), with rm from (5.1) for comparison. 
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It is important to emphasize here that the need for approximations described 

above stems from the difficulty in solving directly the nonlinear differential heat flow 

equation.  The heat flow equation is treated in detail in [36],[69],[70].  It is likely that 

the fitting parameter of 0.34 for the N-S boundary propagation arises due to these 

approximations.  We also know that the NbN film is not thermally insulated, as was 

assumed in our derivation of v.  Finally, [71] and [72] showed that the N-S boundary 

velocity depends on the bias current density in a linear manner.  Taking into 

consideration the above restrictions, we believe that the above model explains the 

experimentally observed QE dependence on temperature quite well, as demonstrated 

in Fig. 5.9. 

 

Figure 5.9 Quantum efficiency dependence on temperature at different reduced bias currents. 
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5.3 Fluctuation-enhanced photodetection: vortex-antivortex pairs 

 In the previous discussion we determined that when 2rm  < w, a photoresponse 

signal of the superconducting stripe is a trade-off between the bias current and 

hotspot diameter.  If the hotspot is very small, rm ≤ ξ, Cooper pairs can easily tunnel 

through it and the resistive region does not form, but the photon energy may still be 

large enough to nucleate the breaking of a thermally-excited VAP (see Chap. 3 for 

details).  This, in turn, leads to dissipation and transient resistive state similar to dark 

counts, but now can be seen as a photodetection event.  The latter could be, in fact, 

the dominant photodetection mechanism for optical photons with very low energies 

(e.g., in the mid-IR), and/or in the case of relatively wide SSPD stripes. 

 Three nanobridges of different widths were used to observe how the width of 

the stripe affects photodetection.  Figure 5.10 shows the photon count rate as a 

function of bias current for 150 nm, 330 nm, and 440 nm wide nanobridges, at T = 4.2 

K, illuminated with similar incident photon fluxes.  We can see that for the 330-nm-

wide device, the count rate drops off faster with Ib decrease, compared with the 

narrower 150-nm-wide device.  In the widest, 440-nm-wide stripe, the photon count 

rate drops off even faster.  The fact that photodetection can be triggered at all in a 

stripe as wide as 440-nm-wide stripe shows that the photodetection mechanism must 

indeed be enhanced by VAPs, as our Jb/Jc criterion in the sidewalks is not likely to be 

reached.  A more thorough discussion of VAP-enhanced photodetection is given by 

Semenov et al. [73].  Here, we would like to conclude that VAP-enhanced 

photodetection can take place only under the following circumstances: wide stripes, 
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low photon energies where the resulting hotspot radius is smaller than ξ, and for low 

Ib’s, when the Jb in the sidewalks does not exceed Jc. 

 

Figure 5.10 Photon count rate as a function of bias current for bridges of different widths. 

 

5.4 Summary 

 Quantum efficiency dependence on temperature measurements demonstrate 

that the dynamics of hotspot N-S boundary propagation must be considered.  The 

static model, which has been applied previously, does not predict the observed QE 

behavior.  Here, we outlined a dynamic hotspot model, which was used to better 

describe the photodetection mechanism.  We also demonstrated that in some cases, 

notably mid-IR photons, the photon counting events are due to VAP dynamics instead 

of the hotspot dynamics. 
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Chapter 6 Toward photon-number resolution 

 
 

6.1 Introduction 

 Certain fast-emerging fields, such as quantum cryptography and linear optical 

quantum computing, require reliable, high-speed, photon-number resolving (PNR) 

single photon detectors.  Photon-number resolution means the ability of a detector to 

distinguish single-photon pulses from two-photon pulses, three-photon pulses, and so 

on.  Two types of superconducting detectors which we already mentioned in Chap. 1, 

namely, the TESs and STJs, exhibit PNR capability and are already available today.  

The TES detector [8],[9], is operated in the superconducting-normal transition region, 

and when light is absorbed, the temperature of the sample rises slightly.  This change 

in resistance is proportional to the total optical energy, i.e., number of photons 

absorbed, which makes the TES a PNR detector.  In the case of STJ detectors [6],[7], 

the absorption of a photon or photons in one of the superconducting electrodes leads 

to a series of processes in which the photon energy is converted into QPs and 

phonons.  The excited QPs then tunnel through the barrier, and are collected on the 

other end by SQUID (superconducting quantum interference device) amplifier.  The 

SQUID can resolve the number of QPs and therefore the number of photons incident 

on the STJ. 
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As we have stressed several times in this thesis, NbN SSPDs are fast and 

reliable, however, because of the way they are typically designed and operated today, 

they are simply photon counters.  Achieving PNR by using pixelated SSPDs has been 

shown [75][76], however, this scheme is extremely expensive, as each pixel requires 

a separate bias and read-out circuit.  The number of pixels represents the number of 

photons the detector can resolve: the main idea behind the operation is that, e.g., two 

simultaneous photons will be absorbed and registered by two different pixels, as the 

probability of both photons being absorbed in the same pixel is extremely low.   

In the following, we demonstrate that using our HEMT-based read-out 

scheme (see Chap. 2 for details), we are able to distinguish the difference between 

dark counts and photon counts, and simultaneously, we should also be able to resolve 

pulses containing one and more-than-one photons. 

Figure 6.1 compares random time traces of SSPD photoresponse for the 

standard scheme and the HEMT (500-Ω load) scheme.  Even from such short time 

trace, we can clearly see that with the standard technique, pulse amplitudes do not 

vary as much as those where the HEMT is utilized. The SSPD used here, which we 

will refer to as device S1, has Ic = 5.5 μA at T = 4.2 K, which is about 3 to 4 times 

lower than the typical Moscow-patterned and MIT-patterned SSPDs, though its 

operation is comparable, with QE = 2% at the wavelength λ = 800 nm.  With the 

typical Ib ≤ 5 μA, we can estimate the hotspot resistance to be Rhs ~ 1.2 kΩ, from 

fitting the live pulses with the PSpice model (see Sec. 2.3.1 for PSpice modeling).  
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Figure 6.1 Comparison of live oscilloscope time-domain traces for (a) traditional scheme and (b) 
HEMT read-out scheme, taken at similar laser intensities, such that n ≤ 1 (HEMT is an inverting 
amplifier, resulting in negative pulses).  Here, n is the number of absorbed photons per pulse. 

 

6.2 Experimental results 

 We used the setup described in detail in Chap. 2 to compare time traces of 

photon events at different wavelengths with dark count events.  Figure 6.2 shows 

histograms comparing pulse-amplitude distributions of the dark-count [Fig. 6.2(a)] 

and photon-count events [Figs. 6.2(b) and 6.2(c)], at two different laser intensities. 

All data were taken at Ib = 0.9Ic.  The photon-count amplitude distributions shown in 

Figs. 6.2(b) and 6.2(c), collected when the detector was irradiated by 700-nm 

photons, are clearly wider than that corresponding to the dark counts, even in the 

single-photon regime [Fig. 6.2(b)], when the average number of photons per pulse in 

the optical beam incident upon the SSPD is n << 1 (e.g., 0.01 photons per pulse). 

When the laser intensity was increased such that n ≥ 1, we can see that the full-width-

at-half-maximum (FWHM) of the distribution shown in Fig. 6.2(c) becomes over 2 



 
 80

times wider than that in Fig. 6.2(a).  The amplitude histograms were fitted with 

Gaussian distributions (red lines). 

 

 

Figure 6.2 Pulse amplitude histograms of dark counts (a), photon counts at λ = 700 nm in the 
single-photon regime, n << 1 (b), and multi-photon regime, n ≥ 1 (c). All measurements 
performed at 4.2 K and at Ib = 0.9 Ic.  The SSPD output voltage amplitudes are divided by the 
amplifier gain. 
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The correlation between the beam intensity (average number of photons per 

pulse) incident upon the SSPD and the Gaussian distribution width of the response 

signals was very reproducible and, as is presented in Fig. 6.3, it has a dependence on 

the SSPD Ib. We can clearly see that the dark-count signals (open squares) exhibit 

overall the narrowest distribution, which, in addition, is independent of Ib.  

   

 

Figure 6.3 Amplitude distribution width (FWHM of Gaussian fits) for dark counts (open 
squares), n << 1 (closed circles), n ≤ 1 (open triangles), and n ≥ 1 (closed triangles).  The inset 
shows counting rate as a function of bias current for dark counts (open squares), and n << 1 
(closed circles). 

 

For photon counts, the general trend is that the distribution width increases 

somewhat with increasing Ib, and there is a wide jump between FWHMs 

corresponding to the multi-photon (n ≥ 1, closed triangles) and single-photon  (n < 1, 

closed circles and open triangles) illumination.  However, for n << 1 (closed circles), 

as Ib approaches Ic, the dark counts start to overall dominate over the photon counts 

and the amplitude distribution width (FWHM), starts to drop around Ib = 0.83Ic, 
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eventually overlapping with open squares at Ib > 0.9Ic. The latter behavior agrees very 

well with our earlier observation of dependence of the rate of photon and dark counts 

on Ib/Ic, as shown in the inset of Fig. 6.3. 

 The above trend can be explained in the following way. Because the 

fabrication of SSPDs is not perfect, we know that there must be a variation in w, as 

well as in d, of our NbN stripes.  We also know that experimental Ic is determined by 

the narrowest and thinnest section(s) of the stripe.  The dark counts are more likely to 

happen in these particular sections, because that is where Ib first comes close enough 

to Ic in order to reduce the binding energy of VAPs, and eventually break them.  

Thus, the Joule heating resulting from dark count events produces a region which 

always has the same resistance, or only slight variations in resistance.   

 By the same token, photon events can also occur in wider sections of the 

stripe, because photons have energy and can break enough Cooper pairs in the wider 

sections to create an initial hotspot, which also grows further due to Joule heating.  

Fluctuations in the stripe width will translate to fluctuations of final hotspot 

resistance, which in turn leads to the observed FWHM broadening of our transient 

voltage pulses.  When n ≥ 1, more sections can be activated, leading to even wider 

distributions, higher fluctuation in the pulse amplitudes, and finally, larger FWHM.   

 We also used a frequency tripling system, and 1310 nm laser diode, to 

compare the SSPD photoresponse at three different photon wavelengths: 267 nm, 720 

nm, and 1310 nm.  Spectral resolution property of SSPDs has already been 

demonstrated, using either the statistical method [24], or other indirect methods [73].  



 
 83

Amplitude histograms were fit again with Gaussian distributions, and studied in great 

detail at different laser intensities and bias currents.  As a result, we were able to 

observe a difference in the mean amplitude between the dark counts, and the three 

aforementioned photon wavelengths, more directly than before, by simply looking at 

variations of pulse amplitudes on our single-shot oscilloscope.   

Figure 6.4(a) shows a plot of mean pulse amplitudes as a function of Ib, in the 

single-photon regime for the three different photon wavelengths, and compares them 

with those of dark counts.  We can clearly see that the pulse amplitude increases with 

the photon-wavelength increase, with the dark counts having the highest amplitude.  

This is consistent with the earlier observation by Semenov et al. [73], we, however, 

have a different interpretation.  Figure 6.4(b) presents FWHM of the same histogram 

distributions.  It is quite obvious that FWHM increases with the photon energy 

increase, which is logical given that the higher energy photons can break more 

Cooper pairs, which means they can activate wider sections of the NbN meander.  

Given these data, it is more likely that the differences in the amplitude observed for 

different photon energies stem from the nonuniformity of the superconducting stripe, 

rather than a true, intrinsic spectral resolution.  Lower energy photons will activate 

only the narrowest sections of the stripe, and due to their higher local resistance as 

opposed to the wider sections, will result in higher pulse amplitudes.  This must also 

be true for dark counts, which are observed to have the highest pulse amplitudes. 
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Figure 6.4 Comparison of (a) mean pulse amplitudes and (b) FWHM of 267 nm photons (open 
triangles), 720 nm photons (closed circles), 1310 nm photons (open circles), and dark counts 
(closed squares). 

 

6.3 Photon-number resolution  

As we mentioned before and was presented by [34], the integrated, cryogenic 

HEMT read-out should allow us to achieve PNR in SSPDs [77]. For large RL's, the 

SSPD transient output pulse resulting from photodetection should be proportional in 

amplitude to the number of photons absorbed, or equivalently, the number of hotspots 

created in the SSPD.  With the estimated hotspot resistance of 1200 Ω, and with our 

RL = 500 Ω, it should then be possible, in principle, to distinguish between the single- 

and multi-photon events. 

 Indeed, when we increased the laser intensity and the bias current so that the 

detector started to register nearly every incident light pulse, while the dark counts 

were still very low, we observed that in time-domain traces some response pulses 

exhibited visibly higher amplitudes than the rest.  Figure 6.5 shows an example of 
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such a time trace, which is quite convincing, but, of course, it is impossible to 

conclude that these large pulses were due to double-photon events, instead of, e.g., 

single-photon events arriving close in time to dark count events, or even resulting 

from inhomogeneities of our meander and the longer current redistribution time. It 

was therefore very useful to look at the statistics of the pulse-amplitude distributions 

once again.  This time, the bulk of our measurements was done by varying the laser 

intensity (mode-locked and twice up-converted light to get λ = 267 nm), and Ib, and 

collecting amplitudes of several thousand pulses at each value of laser intensity and 

Ib.  Operating in the UV also resulted in the increased QE of our SSPDs, as it has 

already been demonstrated by Verevkin et al. [31], who showed that QE increases 

exponentially with the photon wavelength decrease. 

 

 

Figure 6.5 Live oscilloscope time-domain trace, showing higher pulse amplitudes of some pulses. 
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The results are presented in Figure 6.6. When Ib ≈ 0.7Ic, the amplitude 

distribution could be easily fit with a simple Gaussian function, as shown in Figs. 

6.6(a) and 6.6(b). However, once Ib reached 0.9Ic, as shown in Figs. 6.6(c) and 6.6(d), 

we started to see a clear second peak at lower amplitudes, and the distribution now 

had to be fit with two Gaussians.  We believe that both peaks existed in the entire 

range of Ib’s, but at higher Ib, the second peak at lower amplitudes became much 

more prominent.  The latter can be easily explained again by the varying width of the 

NbN stripe: at higher Ib, more and more wider sections of the SSPD meander were 

activated, giving rise to the second peak.  This peak should in principle be centered at 

lower amplitudes, because Joule heating in the wider sections should give rise to 

lower Rhs, as in those sections we should expect a better heat dissipation into the 

substrate than that in the narrower sections.   

 When we plotted the data shown in Figs. 6.6(c) and 6.6(d) on a semi-log scale, 

as presented in Figs. 6.6(e) and 6.6(f), respectively, it became quite clear that the n ≤ 

1 regime  [Fig. 6.6(f)] exhibits a small third peak, centered around 0.8 mV.  This third 

peak was completely absent in the n << 1 regime [Fig. 6.6(e)], and when Ib was below 

0.78Ic. At present, we have no clear interpretation for the existence of the peak. It 

cannot be related to the dark counts, as they fall-off exponentially with Ib and are 

nearly zero below 0.85Ic.  Thus, the most reasonable, tentative, explanation is that it is 

indeed due to multi-photon events associated with two photons simultaneously hitting 

the SSPD meander, as schematically shown in Fig. 6.7.   Furthermore, if we assume 

that these are indeed single and double-photon events, using these data, we can 
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calculate the hotspot resistance to be Rhs ≈ 1500 Ω, in rough agreement with the 

earlier estimate of 1200 Ω, in favor of PNR interpretation.  

 

 

Figure 6.6 Pulse amplitude histograms for (a) n << 1, Ib = 0.7 Ic, (b) n ≤ 1, Ib = 0.7 Ic, (c) n << 1, Ib 
= 0.9 Ic, (d) n ≤ 1, Ib = 0.9 Ic, (e) semi-log plot of (c), (f) semi-log plot of (d) (black histograms 
indicate the same incident photon flux for the n << 1 regime, red histograms indicate the same 
incident photon flux for the n ≤ 1 regime). 
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Figure 6.7 Photon pulse amplitude distribution representing single-photon events (main peak), 
and possible double-photon events (secondary peak). 

 
 
 It turned out that the low Ic of our device S1, whose measurements were 

presented above, worked to our advantage.  We were eventually able to fabricate a 

very high quality device, with QE = 17 % at T = 4.2 K, λ = 800 nm, and Ic = 16 μA, 

referred to as device S2 from now on.  We implemented it into the HEMT setup, and 

repeated the same PNR-type measurements for pulse amplitude distribution widths.  

In principle, a high-QE device should have a better observable PNR, as the 

probability of observing a double-photon pulse is proportional to QE2.   

 What we found, however, is that at high enough bias currents (Ib ≥ 0.9 Ic), 

and/or high photon fluxes (anything larger than n << 1), device S2 latched.  In other 

words, for large Ic, Ib must be also large and close to Ic, and, since Joule heating is 

, with RL = 500 Ω, the current in the SSPD was not able to redistribute into h = Ib
2Rhs
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RL fast enough before run-away heating occurred, sending the entire device into 

resistive state. 

 Figure 6.8(a) presents pulse amplitudes a function of bias current, for both 

dark and photon counts at λ = 800 nm.  A histogram of collected pulse amplitudes for 

Ib = 0.9 Ic is shown in the inset.  For this device, however, we did not observe any 

difference in pulse amplitude between the dark and photon counts, and only a small 

difference in amplitude distribution width, shown in Fig. 6.8(b).  In addition, the 

distribution width, in terms of the percentage of the mean amplitude, is narrower for 

device S2, as compared with device S1 (e.g., for Ib = 0.9 Ic, amplitude distribution 

width/mean amplitude = 22 % for S1, and 10 % for S2). 

 The inability to observe PNR stems one or both of the following reasons: first, 

device S2 latched at photon fluxes higher than n << 1, which means that it could only 

be  operated in the low-flux regime, but in such case the probability of observing two 

photons simultaneously is nearly zero.  Second, device S2 was biased with a current 

up to 2.5 times higher than device S1, which should gave rise to a higher Rhs.  Indeed, 

from simulations we estimated Rhs ~ 3.5 kΩ at T = 4.2 K, which means that 

Rhs >> RL , most of the current redistributes into RL during photodetection, and the 

difference in pulse height for one hotspot as opposed to two hotspots is very small.  In 

fact, for Rhs >> RL , the HEMT system starts to operate in a similar mode to the 

detection scheme with the 50-Ω load line.  The latter is confirmed, as we are not able 

to observe the difference between dark counts and photon counts. 
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Figure 6.8 (a) Pulse amplitude and (b) amplitude distribution width as a function of bias current, 
for dark counts (black squares) and photon counts (red circles) at λ = 800 nm.  The inset in (b) 
shows amplitude distribution histogram at Ib = 0.9 Ic. 

 
 

6.4 Summary 

 Thus far, our HEMT detection scheme for PNR seems promising only for 

devices with low Ic’s.  The higher-Ic devices have Rhs >> RL , as well as the problem 

with latching.  On the other hand, as we showed in Sec. 2.3.1, increasing RL only 

increases the underdamping of the circuit, which makes the device un-operational.  

One may attempt to decrease the parasitic capacitance of the circuit board, which 

would be difficult to do, as the board capacitance is already quite low.  That would 

not guarantee, however, that the device would stop latching. 

 The most promising approach, I believe, is to design SSPDs with an 

intentionally Ic, between 5 and 6 μA, but this approach has its own implications.  In 

order to achieve a high-QE, low-Ic device, one has to fabricate a much narrower (~ 50 

nm wide), but still uniform NbN stripe, an obviously daunting task.  Unfortunately, 
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this would increase the device Lk twice, as Lk is inversely proportional to the cross-

sectional area of the stripe [78], and one would need to compensate for this by 

making the effective length of the meandering stripe half as long (Lk is directly 

proportional to stripe length), resulting in the smaller device active area.  I will leave 

it up to the next Ph.D. student to decide which approach to follow. 
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Chapter 7 Conclusions and future work 

 
 
 In this work, we analyzed dissipation mechanisms in low-dimensional 

superconductors as they relate to dark counts in NbN SSPDs and nanostripes, as well 

as presented the physics of hotspot dynamics in our detectors.  Along with SSPDs, we 

fabricated several nanostripes with various dimensions, for study of the nanowire 

transport properties and dark counts.  Measured dc IV characteristics show voltage 

steps in some of our devices, which are typically associated with PSCs, even though 

our devices are not truly 1D.  However, constricted regions, inhomogeneities, and 

defects, which are likely to be present in our samples, and can give rise to PSCs even 

in 2D superconductors.  In general, however, we were also able to show that while in 

the samples with the smallest width, the resistive transition was dominated by PSCs, 

while in most of our wider samples, broadening of the transition was due to VAPs.  

Evidence of BKT phase transition, found by measuring IV characteristics near Tc, was 

found in all samples.  

 Dark counts, which are indistinguishable from photon counts, were 

investigated by measuring Rdk as a function of Ib, at different temperatures.  We found 

that Rdk decreases exponentially with decreasing Ib, and it decreases at a slower rate at 

higher temperatures, as opposed to low temperatures.  We were also able to show that 

in wider nanostripe samples, as well as samples with a good width uniformity (i.e., 

free of constrictions and/or inhomogeneities), the dark counts were due to the current 



 
 93

induced VAP unbinding.  In SSPDs, at higher temperatures, we could successfully 

apply the PSC model to Rdk.  We believe that since our devices are in a quasi-1D 

regime, dark counts are due to the superposition of PSCs and VAPs. 

 In order to probe the hotspot dynamics during photodetection, we measured 

the dependence of QE on temperature.  We found that the N-S boundary propagates 

with a higher velocity at low temperatures, giving rise to a larger hotspot, which 

translates to higher QE.  The hotspot dynamics are quite complex, and a full 

understanding is important for future design and improvement of SSPDs.   

 Finally, we implemented a HEMT-based, high-load read-out setup, which 

allowed us to achieve some pulse amplitude resolution.  Thus far, the 500-Ω load is 

still somewhat low, however, higher RL’s result in circuit underdamping, which limits 

the SSPD count rate.  In the future, a design is needed which will optimize the trade-

offs between RL, count rate, and amplitude resolution. 
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