<u>Efficiently Certifying Large</u> <u>Amounts of Entanglement in</u> <u>High-Dimensional Quantum</u> <u>Systems</u>

> Gregory A. Howland Rochester Institute of Technology

James Schneeloch, Chris Tison, Mike Fanto, Paul Alsing Air Force Research Laboratory

> Photonics for Quantum Workshop Jan 2019

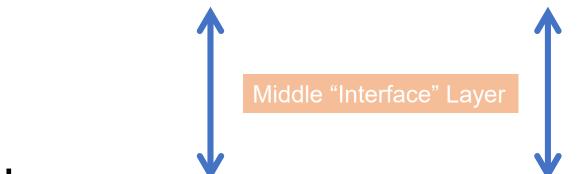
Big Picture

Logical Layer

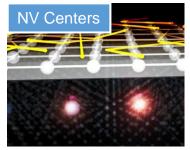
Sensing Protocols (e.g. Cramer-Rao Bound/Quantum Limit)

Algorithms (e.g. Shor/Grover)

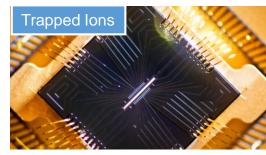
Secure Communication Protocols



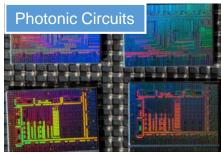
Platform Layer



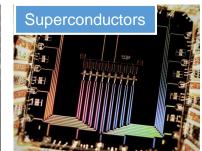
https://jqi.umd.edu/news/quantumsensor-nanoscale-electrontransport



https://jqi.umd.edu/news/future-ion-traps



AFRL/RIT



http://web.physics.ucsb.edu/~martinisgroup/

Big Picture

Platforms are varied and imperfect.

We need practical tools for characterizing largescale quantum systems and the resources they provide.

Quantify Entanglement in High Dimensions

What do I mean by high-dimensions?

- Quantum system divided into two parts (for now)
- Each party has n local measurement outcomes where n is big (100,1000,10000,512².....)
- Measuring a joint-distribution is n^2 measurements
- Hilbert space can be continuous or discrete

Examples

- Photon pairs entangled in spatial variables (position/momentum, orbital angular momentum)
- Photons entangled in energy-time (or time bins/frequency bins)
- Path entangled qudits on chip
- Divide atomic/superconducting systems in two (may be separate, may not be)

Quantifying Entanglement Overview

- Quantifying Entanglement
 - Most general way is to compute an *entanglement monotone*
 - Entanglement of Formation: The number of two-qubit Bell pairs required on average to synthesize the desired quantum state
 - **Distillable Entanglement**: The number of two-qubit Bell pairs on average that can be synthesized from a given quantum state
 - Measured in units of *ebits*. 1 *ebit* is the quantity of entanglement in a perfect, two qubit Bell State.
 - Computing these requires the density matrix which is difficult to acquire at large dimension
 - Entanglement-Dimensionality (Schmidt Rank)
 - Usually we can only *witness* entanglement in large quantum systems or use application-specific metrics
- Quantitative Entanglement Witnesses
 - lower-bounds for entanglement monotones that can be computed from limited data (e.g. do not require a density matrix)

Quantifying Entanglement

The Hard Way

- Perform a full experimental unbiased quantum tomography
 - Scales exponentially with added particles and at least quadratically with added dimensions
- Compute an entanglement monotone (e.g. ebits)
 - NP-Hard in general

The Easy Way?

- Invent a quantitative entanglement witness that...
- 1. Works with very limited data
- 2. Measurements are easy and "smart"
- 3. Results not contingent on any assumptions
- 4. Easy error analysis
- 5. Avoid numerical inversion/optimization

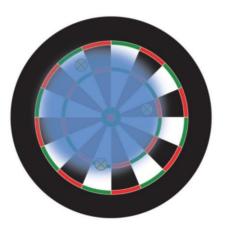
Uncertainty Relations

Variance-Based

$$\sigma_x \sigma_k \ge 1/2$$

• Variance captures localization or clustering

Information-Based (Entropic)

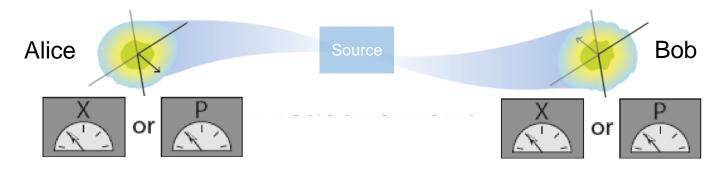


$h(x) + h(k) \ge \pi e$

- h is Shannon Entropy (bits)
- Entropy captures the number of questions you have to ask? (1 bit = 1 yes/no question)

The more information a measurement tells you about position statistics, the less information a subsequent measurement can tell you about momentum statistics.

Witnessing the EPR Paradox



EPR Paradox is seen when $\sigma_{x_A|x_B}\sigma_{k_A|k_B} \leq 1/2$

Entropic Witness of the EPR Paradox $d \log \left(\frac{\pi e}{\Delta_x \Delta_k}\right) - [H(X_A | X_B) + H(K_A | K_B)] \le R_{secret}$ secret key rate

- $H(X_A|X_B)$ is the conditional Shannon Entropy
- (Small when knowledge about system "A" specifies system "B)
- Only requires measuring $P(X_A, X_B)$ and $P(K_A, K_B)$

PRL 110, 130407 (2013) PHYSICAL REVIEW LETTERS week ending 29 MARCH 2013

Violation of Continuous-Variable Einstein-Podolsky-Rosen Steering with Discrete Measurements

James Schneeloch,¹ P. Ben Dixon,² Gregory A. Howland,¹ Curtis J. Broadbent,^{1,3} and John C. Howell¹ ¹Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA ²Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA ³Rochester Theory Center, University of Rochester, Rochester, New York 14627, USA (Received 13 September 2012; revised manuscript received 24 January 2013; published 27 March 2013)

EPR to Ebits

PHYSICAL REVIEW A 97, 042338 (2018)

Quantifying high-dimensional entanglement with Einstein-Podolsky-Rosen correlations

James Schneeloch^{*} and Gregory A. Howland Air Force Research Laboratory, Information Directorate, Rome, New York 13441, USA

(Received 12 September 2017; published 24 April 2018)

$$d \log \left(\frac{2\pi}{\Delta_x \Delta_k}\right) - \left[H(\mathbf{X}_A | \mathbf{X}_B) + H(\mathbf{K}_A | \mathbf{K}_B)\right] \le -S(A|B) \le E_f$$

d --- number of dimensions in vector space Δ_x --- discretization pixel physical dimension dimension Need to measure $P(X_A|X_B)$ and $P(K_A|K_B)$ Note: bold indicates vector space observable S(A|B) is the quantum conditional entropy Entanglement of Formation (how many ebits you have)

Not doing a tomography anymore, but still a lot of measurements!

Scaling to Many Dimensions

"One can regard the possibility of digital compression as a failure of sensor design. If it is possible to compress measured data, one might argue too many measurements were taken" – David Brady (via EJ Candes)

How can we measure just the "important part" of a signal?

How can we go "Analog to Information"? (DARPA)

Can we replace the "Nyquist Rate" with the "Information Rate"?

Measurements are questions. What are the right questions to ask our system?

Scaling: How do we use prior knowledge

Prior Knowledge

- Usually expect some for of structure in a system of interest
- Structure = Compression
- Abstract
 - Low rank density matrix, nearly pure state, EPR-type, compressible
- Technical

Knowledge/model of particular system or hardware

Estimation vs Certification

Estimation is your Best Guess

- Maximum Likelihood Estimation
- Compressive Sensing
- Bayesian Inference
- Assumption-based tomography
- Fidelity to a target state

- Numerical/Computational Techniques
- Noise Reduction
- Background Subtraction
- Any of your favorite

Certification is a Guarantee

- For limited measurements, the result is the *worst case* possibility consistent with the measurements
- Essential for quantum security and foundational issues (e.g. closing loopholes)

Can we still certify entanglement if we exploit prior knowledge?

How to exploit <u>expectations</u> to improve our Quantitative Entanglement Witness

Assumptions → Estimation

Result is contingent on assumptions

Expectations → Certification

- Result is valid whether or not expectation is met
- Expectation helps guide you to "asking good questions"
- Outcome will confirm whether you had "great expectations"

$$d \log \left(\frac{2\pi}{\Delta_x \Delta_k}\right) - \left[H(X_A | X_B) + H(K_A | K_B)\right] \le E_f$$

For certification, any approximations we make must **never decrease** the conditional entropy (e.g. decrease the uncertainty)

Good news! When you mess around with conditional entropies you tend to increase them

Improvement 1

Exploit the *expectation* of local separability

A property of conditional entropies is $H(X_A|X_B) = H(X_{A1}, \dots, X_{An}|X_{B1}, \dots, X_{Bn}) \le H(X_{A1}|X_{B1}) + \dots + H(X_{An}|X_{Bn})$

Inequality becomes = when $P(X_A, X_B)$ is separable

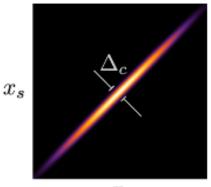
Example: 2-D Spatial Coordinates X = (X, Y) *then* $H(X_A | X_B) \le H(X_A | X_b) + H(Y_A | Y_b)$

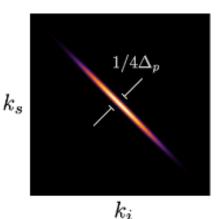
- Instead of measuring $P(X_A, X_B)$, measure $P(X_A, X_B)$ and $P(Y_A, Y_B)$ separately $(n^4 \rightarrow 2n^2)$
- Inequality is *always* true even if the distribution isn't actually separable.

Improvement 2

Exploit the expectation of Sparsity/Compression

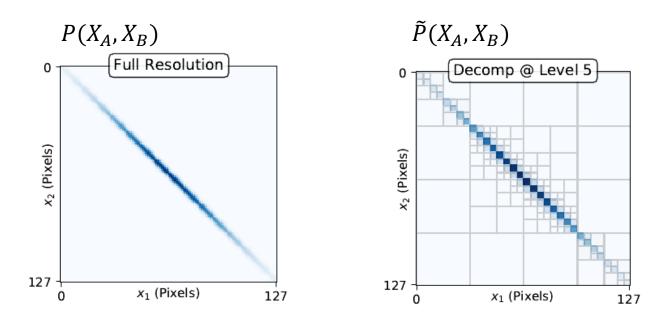
- If our system is highly entangled, we will probably choose to measure observables that are highly correlated
- Highly correlated probability distributions are very sparse
- Want to scan at high-resolution where the correlations are strong and low-resolution elsewhere





Improvement 2: Multi-Level Approximation

- Replace $P(X_A, X_B)$ with $\tilde{P}(X_A, X_B)$ which is an **arbitrarily** coarse grained estimate of *P*
- Coarse Graining = replace collections of elements with their average value
- This can only *increase* the conditional entropy (good)
- $H(X_A|X_B) \leq \widetilde{H}(X_A|X_B)$ so we can use it!



Improved Quantitative Entanglement Witness

In two suggestive dimensions (x,y)...

$$2\log\left(\frac{2\pi}{\Delta_{x}\Delta_{k}}\right) - \widetilde{H}(X_{A}|X_{b}) + \widetilde{H}(Y_{A}|Y_{b}) + \widetilde{H}\left(K_{A}^{(x)}|K_{b}^{(x)}\right) + \widetilde{H}\left(K_{A}^{(Y)}|K_{b}^{(y)}\right) \leq E_{f}$$

Constant that comes from uncertainty relations Horizontal Position Correlations (multilevel) Vertical Position Correlations (multilevel)

Horizontal Momentum Correlations (multilevel) Vertical How many Momentum ebits we Correlations certify (multilevel)

Only assumptions are how probability distributions are found

None are added by the witness

The talk could end here...

Quantifying entanglement in a 68-billion dimensional quantum system

James Schneeloch,¹ Christopher C. Tison,^{1,2,3} Michael L. Fanto,^{1,4} Paul M. Alsing,¹ and Gregory A. Howland^{1,4,*}

¹Air Force Research Laboratory, Information Directorate, Rome, NY 13441 USA

²Department of Physics, Florida Atlantic University, Boca Raton, FL 33431 USA

³Quanterion Solutions Incorporated, Utica, NY 13502 USA

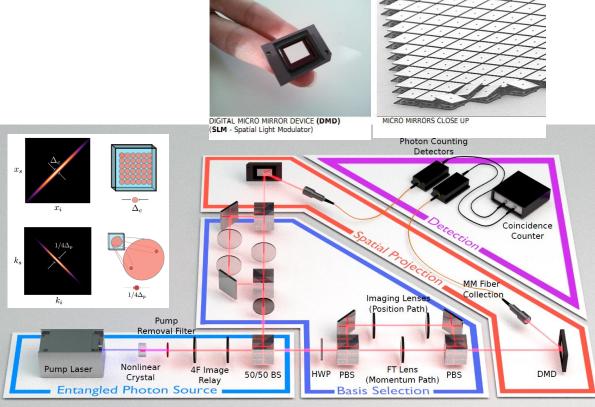
⁴Rochester Institute of Technology, Rochester, NY 14623 USA

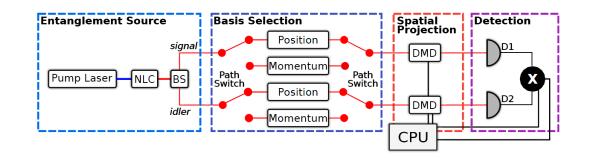
(Dated: May 23, 2018)

- <u>https://arxiv.org/abs/1804.04515</u> (in review)
- Quantify 7.1 ebits between spatially entangled photon pairs (512 x 512 pixels per photon)
- Use 20 million times fewer measurements than uncompressed inequality

Spatial entanglement testbed

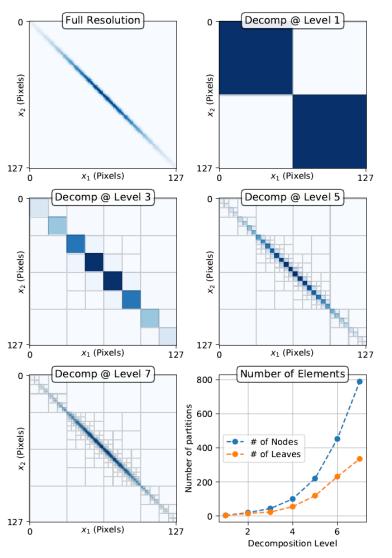
- Easily generated via Spontaneous Parametric Down-Conversion (SPDC) and manipulated with DMDs or SLMs.
- Serves as a proxy-system for energy-time, OAM, other HD bipartite entangled systems.
- Very large entanglement because X and K are continuous variables
- Produces an entangled state very similar to that described in the original EPR paradox.
 - Positive position correlations
 - Negative momentum correlations
- Good for testing new characterization protocols.



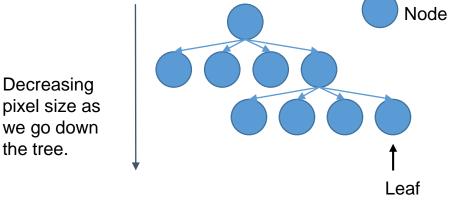


Adaptive, quad-tree sampling

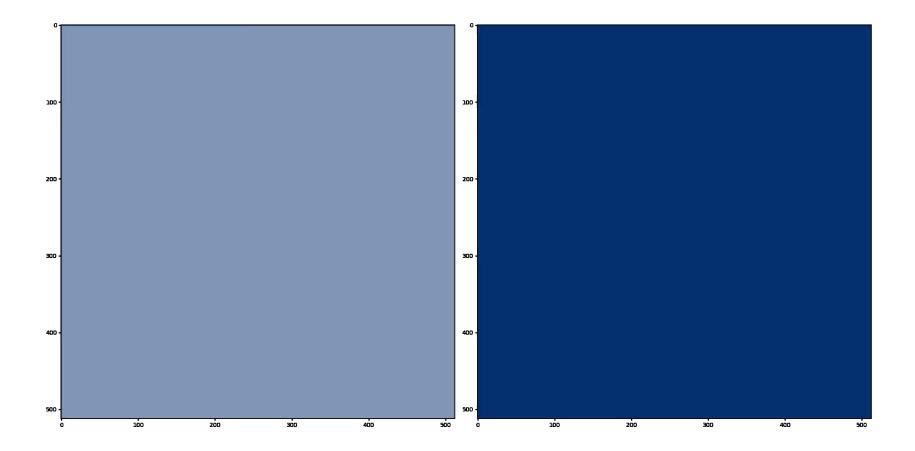
the tree.



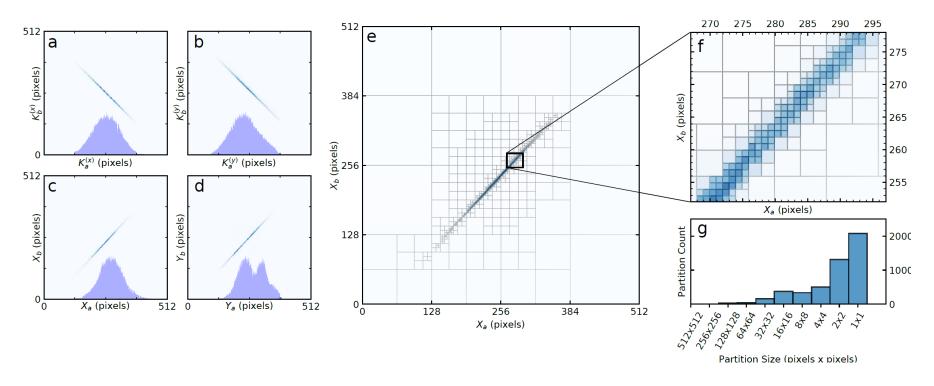
- In an entangled system, we expect distributions of certain observables to be very sparse (e.g. $P(x_1, x_2), P(k_1, k_2)$ due to high intensity correlations
- Want to scan at high-resolution in highly-correlated ٠ regions and low-res elsewhere
- Use an adaptive quad-tree sampling technique. Split a block when intensity (coincidence count rate) is greater than a chosen threshold.
- Commonly used in computer graphics for collision detection



Adaptive Sampling Demo

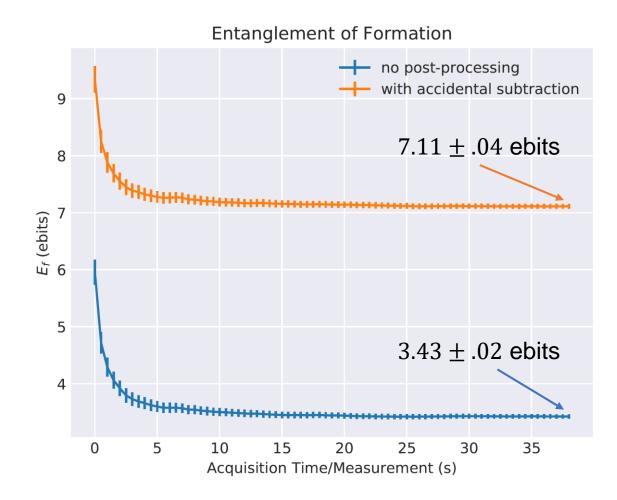


Results: Compressed Distributions



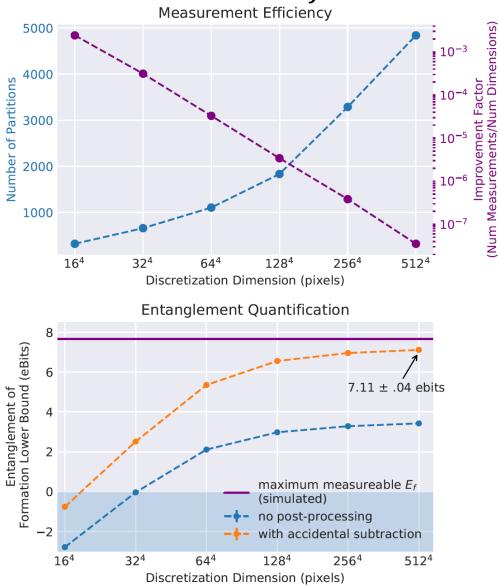
- Separately measure $\tilde{P}(X_A, X_B)$, $\tilde{P}(Y_A, Y_B)$, $\tilde{P}(K_A^{(x)}, K_B^{(x)})$, $\tilde{P}(K_A^{(y)}, K_B^{(y)})$
- 512 x 512 pixels-per-photon for each distribution
- 6456 total partitions required (Factor of 20-million fewer than joint-scan)
- Large partitions require *fewer than 1 coincidence count-per-pixel*

Results: Entanglement vs acquisition time



- Error bars enclose two standard deviations
- Early region is before statistical significance is reached
- 6,456 total measurements

Results: E_f vs maximum resolution



- Record 7.1 ebits certified
- 20 million times more efficient than uncompressed version
- 10^18 times more efficient than tomography
- **Progressive** use few measurements to witness entanglement, refine to accurately quantify
- Error bars present but scarcely visible
- No numerical inversion or optimization codes

Full disclosure --- we did make some assumptions in the demo

- Post-selected on coincidence detections
- Did background subtraction (sometimes)
- Have a finite detection window
- Have a finite quantum efficiency of our detectors and other losses
- But this is not the fault of our witness

Other groups are working in this space too

PRL 118, 110501 (2017)

PHYSICAL REVIEW LETTERS

week ending 17 MARCH 2017

Quantifying Photonic High-Dimensional Entanglement

Anthony Martin,¹ Thiago Guerreiro,^{1,*} Alexey Tiranov,¹ Sébastien Designolle,¹ Florian Fröwis,¹ Nicolas Brunner,¹ Marcus Huber,^{1,2} and Nicolas Gisin¹ ¹Group of Applied Physics, University of Geneva, CH-1211 Geneva 4, Switzerland ²Institute for Quantum Optics and Quantum Information, Austrian Academy of Sciences, A-1090 Vienna, Austria (Received 21 December 2016; published 14 March 2017)

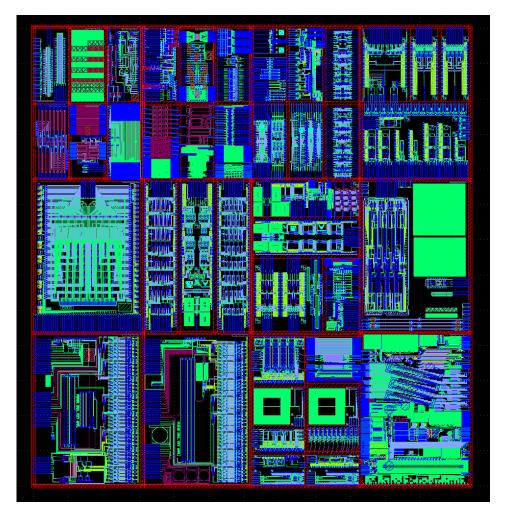
ARTICLES https://doi.org/10.1038/s41567-018-0203-z nature physics

Measurements in two bases are sufficient for certifying high-dimensional entanglement

Jessica Bavaresco¹, Natalia Herrera Valencia^{1,2}, Claude Klöckl^{1,3}, Matej Pivoluska^{1,3,4}, Paul Erker^{1,5,6}, Nicolai Friis^{1*}, Mehul Malik^{1,7*} and Marcus Huber^{1*}

Future Work

- Adapt to many-body systems
- Resource-based analysis
 - Instead of how many measurements do we need, how many copies of the quantum system do we consume
- Other ways to use prior knowledge?
- Use multi-channel detection
 - Photon counting cameras
 - Many-channel SNSPD arrays
- Use on interesting platforms (e.g. integrated photonic circuits)



DISTRIBUTION A. Approved for public release: distribution unlimited. (88ABW-2019-0221)

Acknowledgments

- Thanks to:
 - AFRL Quantum Group
 - James Schneeloch
 - Mike Fanto
 - Chris Tison
 - Paul Alsing
 - Stefan Preble's Group (RIT)

Thank you for listening!

Questions?

gaheen@rit.edu

