Infrared detectors

Paul Norton Santa Barbara, CA

Outline

- Norton's Law of infrared detectors
- Brief status of cooled infrared detectors and current issues
 - HgCdTe
 - Type II strained-layer superlattices
 - MWIR detectors
 - SWIR detectors
- The origin of 1/f noise
- NE Δ T for dummies

Norton's Law and the Project Uncertainty Principle

"All physical phenomena in the range of 0.1-1 eV will be proposed as an infrared detector"

Corollary to Norton's Law—

"No phenomena proposed as an infrared detector will fail to find a sponsor"

project uncertainty principle

Norton's Law data (*predictions)

- Thermocouples
- Golay cells
- Photon drag effect
- Quantum wells
- Superlattices
- Josephson junctions
- SQUIDs
- Ballistic electron transistors
- Quantum dots
- Protein microbolometers
- Giant magnetoresistance* $\sqrt{}$
- Quantum entanglement*

Antenna-coupled MOM detectors

- Polyvinylidene flouride
- Ferro- and pyro-electrics
- Antenna-coupled Shottky diodes
- Metal-semiconductor-metal junctions
- Resonant tunneling diodes
- Thallium-indium-phosphide/arsenide
- Bimaterial cantilevers
- Nanowires
- Organic semiconductors* $\sqrt{}$
- Nanotubes* $\sqrt{}$
- Bose-Einstein condensates*

ZnO nanowires

Requirements for a good detector

- Large $\alpha \tau$ product
 - -where α is the absorbtion coefficient and τ is the minority carrier lifetime

Photon detectors

Hybrid detector structure

Detector size progression

Status of HgCdTe

- Most versatile and widely used detector
 - 0.8 to >20 μ m coverage
 - Approaches theoretical limits for many situations
 - Maturing dual-band capabilities
 - MWIR/MWIR and MWIR/LWIR
 - Growth on Si and GaAs substrates has made very large arrays possible
 - $4K \times 4K$

Two-color images in 1280×720 format

HgCdTe issues

- Cost is high on CdZnTe substrates
 - But very competitive on Si or GaAs substrates
- LWIR on Si and GaAs has significant high noise tail
- VLWIR yield is low for the most demanding applications

NEΔT of MCT on GaAs at f/6

Type II strained-layer superlattices

- Potential replacement for HgCdTe
 - Theoretically longer lifetime—but LWIR lifetimes are currently <100 nsec which MCT is >1 µsec
- Flexible spectral range—artificial bandgap made by varying the thicknesses of InAs/(In)GaSb layers
- AIM (Germany) has begun production of a dual-band MWIR/MWIR detector array for the European A400 transport plane

Type II SLS issues

- The short lifetime gives large dark currents
 - The origin is has not been determined yet
 - Developers have been incorporating majoritycarrier barriers to limit the dark current
- GaSb substrates only developed to 4-inch

1024² SLS MWIR image with 19 μ m pixels – JPL/RVS

MWIR detectors

Contenders—InSb, HgCdTe, Type II SLS, and xBy

- InSb is very mature but needs to be cooled to <90 K
- MCT on Si can be cost competitive
 - Operating temperature to >150 K (maybe >200 k)
 - Long lifetime $->10 \mu sec$
- Type II SLS going into dual band production
- xBy (e.g. nBn or pBn) provides blocking to compensate for short lifetime and provides quasipassivation

Barriers

- Being deployed in both Type II SLS and xBy structures
 - Localize wave function to increase overlap in Type II SLS
 - Block majority carrier currents
 - Provide quasi-passivation
 - Blocks majority carriers from free surfaces, but does not block minority carriers

SWIR detectors—potential replacement for night vision goggles

Contenders—InGaAs, HgCdTe, and Ge

- InGaAs grown on InP is currently highly developed out to $1.7 \,\mu \text{m}$
 - Performance degrades for $\lambda > 1,7 \mu m$ due to InP lattice mismatch
 - Limited InP substrate size
- HgCdTe
 - R_0A products lower than InGaAs with 1.7 μ m cutoff
 - Performance does not drop going to longer λ
- Ge
 - Indirect bandgap limits absorbtion near bandgap
 - Can be integrated with Si circuits at some foundries
 - Wafers up to 12 inches grown on Si

SWIR imagery

• Achieving absolute minimum dark current and low readout noise

InGaAs SWIR image from a 640×512 array (with help from Photoshop shaddows/highlights adjustment) under "minimal street lighting" conditions with f/1.4 and t_{int} = 30 ms — Aerius

The origin of 1/f noise

Recent mathematical modeling of electron transport using the Navier-Stokes equation has shown that for certain geometrical flows, the onset of turbulence occurs at very low Reynolds numbers

 $\rm R_{\rm e}$ was 32.5 for this case

Recent data from D'Sousa

Consider flow from diffusionor photo-curent

- Flow is uniformlydistributed across junction
- Turbulence from adjacent regions will screen (damp) each other
- Reynolds number may be several thousand

Consider flow from g-r or trap-assisted tunneling (TAT) centers

- Originates from a few points in the depletion region—probably close to the plane of maximum electric field
- Flow jets are isolated from each other
- Note—all the current comes streaming from a very few locations
- Reynolds number may be quite low

Proposed test structure

- Measure 1/f noise vs bias direction in a test structure with asymmetrical design
 - Flow into reservoir should be much more turbulent than into an exponential horn

Alternative test

- Mimics point source generation
- Compare with flood illumination from the same source
 - suggested by W. Tennant

NE ΔT for dummies (like me)

- First consider the flux change for a change of 1 K at 300 K
 - This case is for 300 K with an f/2 field of view
- Note that rows
 5 and 6 are
 independent of
 f/#

Quantity	Value
LWIR photon flux at 301 K	1.20345 x 10 ¹⁶
LWIR photon flux at 300 K	1.18210 x 10 ¹⁶
Δ flux	2.13532 x 10 ¹⁴
Contrast = Δ flux/300 K flux	1.8 %
$S/N = 300 \text{ K flux}/\Delta \text{ flux}$	55

Counting statistics for a Poisson distribution

- $S/N = \eta^{1/2}N/N^{1/2} = (\eta N)^{1/2}$
- Consider a detector with high quantum efficiency coupled to a readout having a well capacity of Q electrons
 - It is common practice to half-fill the well during an integration to maintain room for signal
 - So S/N = $(\eta N)^{1/2} = (\eta Q/2)^{1/2}$
 - We also need to add another factor of 1/2^{1/2} to adjust for bandwidth

An example

- Consider a readout with 2×10^7 capacity
- If we half fill it, we get a S/N of 3162 or a sensitivity of $3162^{-1} = .031\%$
 - Referring back to the table, we see that we need a sensitivity of 1.8% to detect 1 K
- NE $\Delta T = (2\eta)^{1/2} \times .03/1.8 = 24$ mK for $\eta = 1$

NE ΔT for dummies

