Novel Nano-Engineered Semiconductors for Possible Photon Sources and Detectors

NAI-CHANG YEH

Department of Physics, California Institute of Technology

- 1. Nanotechnology & nanomaterials
- -- Functional nanomaterials enabled by nanotechnologies.

2. Semiconducting nanowires

- -- Why semiconducting nanowires? (Physics, applications & fabrication)
- -- Fabrication of NWs.
- -- Novel properties of strained silicon nano-pillar arrays (2 ~ 5 nm diameters) & FET's and quantum dots based on Si nano-pillars.

3. Graphene nanoribbons & related nanostructures

- -- The rise of graphene.
- -- Physics of graphene.
- -- Novel phenomena of graphene & related structures.
- -- Potential applications to light emission & photodetection.

* In collaboration with

M.L. Teague, C. R. Hughes, A.D. Beyer, A. P. Lai, T.-P. Wu (Caltech) Prof. A. Scherer & group members ------ (Caltech) Prof. M.W. Bockrath & Prof. C.-N. Lau ------ (UC Riverside)

* Funding agencies

National Science Foundation, Moore Foundation, and Kavli Foundation ------ (Caltech) National Science Foundation ------ (UC Riverside)

1. Nanotechnology & nanomaterials

- -- Functional nanomaterials enabled by nanotechnologies.
- 2. Semiconducting nanowires (NWs)
- 3. Graphene nanoribbons & other related nanostructures

1. Nanotechnologies & Nanomaterials

- Nanotechnologies have enabled uniquely functionalized or structured nano-materials ("meta-materials") for:
 - \rightarrow studies of low-dimensional physics in quantum confinement;
 - \rightarrow applications "from A to B" (astronomy, biology, beyond CMOS, etc.)

Reduced dimensionalities:

Two-dimensional (graphene, 2DEG)

One-dimensional

(nanowires, nanotubes)

V. G. Dubrovskiia et al., Semiconductors <u>43</u>, (2009)

Zero-dimensional

(quantum dots, nanocrystals)

L. Kouwenhoven et al., Phys. World (2001)

1. Nanotechnology & nanomaterials

2. <u>Semiconducting nanowires</u>

- -- Why semiconducting nanowires? (Physics, applications & fabrication)
- -- Fabrication of NWs.
- Novel properties of strained silicon nano-pillar arrays (2 ~ 5 nm diameters) & FET's and quantum dots based on silicon nano-pillars.

3. Graphene nanoribbons & related nanostructures

2. Semiconducting Nanowires (NWs)

2.1. Why semiconducting NWs?

- Semiconducting nanowires (NWs) have been demonstrated to be highly versatile optoelectronic components for a wide variety of applications, including:
 - * polarization-sensitive photodetectors & arrays with sub-wavelength resolution;
 - * polarization-sensitive nano-APD (with gains up to 10⁵);
 - * optical modulators & nano-waveguides;
 - * nano-LEDs and nano-lasers ;
 - * solar cells, biomedical sensors, etc.

2.2. Fabrication of NWs

Mechanism of the growth vapor-liquid-crystal:

V. G. Dubrovskiia et al., Semiconductors <u>43</u>, (2009)

An ensemble of GaAs-NWs grown by MBE

An individual GaAs-NW

Formation of NWs by selective epitaxy on treated surfaces w/o a catalyst;

• Other growth mechanisms such as self-assembly, etc.

2.3. Strained silicon nano-pillars

(Axel Scherer's group)

When small silicon pillars are oxidized, the silicon lattice expands by approximately 40%, which leaves the adjacent un-oxidized silicon under tremendous tensile strain. In nanowires, this strain can increase to the point where the silicon oxidation process is selflimited, leaving stable 2 ~ 10 nm wide tensile-strained silicon cores within a silicon dioxide shells.

The nano-pillar diameter is controlled by the oxidization temperature.

Silicon Nano-rods can be further decreased in size by thermal oxidation

 $Si \rightarrow SiO_2$ is accompanied by a 40% volume expansion

Atomically resolved imaging & spectroscopy using scanning tunneling microscopy (S-FIVI)

STM operation is based on:

1) Quantum tunneling of electrons

 Tunneling current (I) depends strongly on the surface work function (φ), the separation (s) and the biased voltage (V) between the tip & sample.

2) Piezoelectric control

-- Enables atomic scale resolution for surface topography and lateral scanning capabilities.

Two primary modes of operation:

- 1) Three-dimensional imaging
 - -- Under feedback control, the "constant current map".

2) Spectroscopy

 Fixed location differential conductance (dI/dV)-vs.-V map, under constant φ.

Strain-enhanced energy gap in silicon nano-pillars

Spatially resolved spectroscopy of HF-etched silicon nano-pillars

Surface topography from STM after HF chemical etching

The energy gap increases from ~ 1.1 eV for crystalline silicon to ~ 3.0 eV for the strained silicon nano-pillars.

(Our preliminary STM results)

Further quantum confinement is expected for a finite magnetic field parallel to the silicon nano-pillars, because the diameter of the nanopillars is typically smaller than the cyclotron orbit.

Making a transistor out of a strained silicon nano-pillar:

(Courtesy of Axel Scherer)

Similar transistor structures have been demonstrated in InAs nanowires with larger diameters and separations:

1. Nanotechnology & nanomaterials

2. <u>Semiconducting nanowires</u>

3. Graphene nanoribbons & related nanostructures

- -- The rise of graphene.
- -- Physics of graphene.
- -- Novel phenomena of graphene and related structures.
- -- Potential applications to light emission & photodetection.

3. Graphene Nanoribbons & Related Nanostructures

3.1. The Rise of Graphene

Carbon structures in different dimensions:

• Graphene consists of carbon atoms in honeycomb lattice.

(Courtesy of M.W. Bockrath)

- Unique Dispersion Relations: massless Dirac Fermions.
- First experimental isolation by Geim's group in 2004. [Novoselov et al, Science (2005).]

Two sublattices in the honeycomb lattice:

3.2. Physics of graphene

Electronic bandstructures of graphene:

- Tight binding approximation, assuming a perfectly ordered infinite system, 3 covalently bonded sp² and 1 2p_z conduction electrons.
- The resulting E_{2D}(k) band structure is

Near the "Dirac points" K & K'

$$E_{2D}(k_x, k_y) = \mp 3\sqrt{1 + 4\cos\frac{\sqrt{3}k_x a}{2}\cos\frac{k_y a}{2} + 4\cos^2\frac{k_y a}{2}}(eV) \approx \pm v_f \hbar \left|\vec{k}\right|$$

Image from: http://www.ece.mcgill.ca/~ts7k op/images/graphene_xyz.jpg

Images: Ph.D. thesis of Jinseong Heo, Caltech (2008).

Graphene bipolar field effect transistors (FETs)

- Conductivity (σ) increases linearly with charge density (*n*): $\sigma \propto V_g \propto n$
- Extremely high mobility: ~ 15,000 cm²/Vs in as-prepared, non-optimized samples, compared to ~ 2,000 cm²/Vs for silicon.
- Conductivity σ remains finite at Dirac point → σ_{min} (Novoselov *et al*, *Nature*, 2005, Zhang et al, *Nature* 2005, Miao et al, *Science* 2007, Kim group, Fuhrer group....)

Applications of Graphene

Demonstrated applications:

- Transparent electrodes for solar cells, LCD, etc.
- Robust, non-volatile, atomic switches.
- Chemical and biological sensors based on graphene.
- Electronics, Spintronics, and Valley-tronics.

Post silicon electronic materials:

- With advantages of carbon nanotubes.
 - ✓ high thermal conductivity (~5000 W/mK)
 - \checkmark high current density (~ mA/µm width)
 - ✓ high mobility (~20,000 cm²/Vs in as-prepared samples, 300,000 if suspended)
 - ✓ supports ballistic transport over large distances
- $2D \rightarrow compatible$ with lithographic techniques.
- Potential for large scale synthesis.

Challenges & Current Research Directions

- Large-scale & high-quality production
 → MBE or CVD growth.
- Device and bandgap engineering
 - \rightarrow graphane (*i.e.* hydrogenated graphene)
 - \rightarrow nanoribbons
 - \rightarrow atomic switches
 - \rightarrow local strain

Novel devices

- \rightarrow ballistic transistors
- \rightarrow supercollimators & electronic lensing
- \rightarrow Schottky diodes & light emitting diodes
- \rightarrow photodectors

Graphene is a semi-metal, or zero-gap semiconductor. How does one engineer an energy gap in graphenebased systems?

Graphene nanoribbon (0 ~ 200 meV)

Graphane (0 ~ 3.5 eV)

3.3. Novel properties of graphene & related structures

Energy gap engineering of graphene nanoribbons (GNR):

- * Band gap induced by quantum confinement.
- * GNR field effect transistors (FETs).
- * Lithographically or chemically defined nanoribbons.

0.2

 E_{g}

eV

nm

- * On/Off ratio ~ 10^6 .
- * Mobility ~ $200 \text{ cm}^2/\text{Vs}$.

Strain-induced modifications to the electronic properties of graphene:

- 1. Mechanically exfoliated graphene on SiO_2 .
- 2. CVD-grown graphene on Cu.

STM calibration on graphite

- We tested on graphite to calibrate STM and verify tip quality.
- STM topography scan over graphite manifests the A-B-A-B stacking of graphene hexagon sheets, known as the Bernal stacking.

STM studies of graphene on SiO₂

 STM topographic image of graphene reveals a distorted honeycomb lattice, showing surface corrugations (~ 0.7 nm z-axis modulations over ~ 20 nm distance) correlated with the underlying SiO₂ substrate.

STM studies of graphene on SiO₂

- Fourier transform of the topographic image of graphene reveals a strained-induced distorted reciprocal lattice.
- Local electronic properties are also modified by the strain fields.

Strained-induced conductance modulations

FORNI

Strain-induced modifications in the out-of-plane phonon-ORNI assisted tunneling gaps & conductance n"). .5 dl/dV(a.u)10-13 0.01 dl/d'//(l/\/)(a.u.) T = 0Theoretical curve with -150 $\omega_{\rm ph} = 42 \text{ meV}$ 150 (nm) X(nm) 0 T=77K -180 180 0 -150 Energy (meV) 150 -0.01 4.5 dl/dV(a.u)10-¹³ **Theoretical** T = 0X(nm) 2.2 0 dl/dv/(l/v)(a.u.) curve with $\omega_{ph} = 24 \text{ meV}$ ° 150 сi сi 150 This work: لاالالال M.L. Teague et al, Nano 🖹 77 К. Letters 9, 2542 (2009) Ō. 0 -180180 0 Energy (meV) 150 -150ŝ **References:** dl/dV/(I/V)(a.u.) dl/dV(a.u)10-13 • Y. Zhang et al, Nature ω_{ph} varies Phys. 4 (2008). from 21 meV 0 γ(nm) 5.0 to 44 meV. • T.O. Wehling et al, Г**=** 77 К. PRL 101 (2008). 0 Energy (meV) 150 -150-180 0 Energy(meV) 180

The out-of-plane phonon frequencies increase with increasing strain, suggesting coupling of π -electrons to the underlying phonons of the dielectric SiO₂.

N.-C. Yeh et al, preprint, (2010).

Strain-induced structural & conductance modifications in large-scale CVD grown-graphene-on-septer

- CVD growth of graphene on copper foils at ~ 1000°C under hydrogen gas with CH₄ partial pressure.
- Large differences in the thermal contraction coefficients of graphene and copper lead to ripple structures.
 [N.-C. Yeh *et al*, (2010)]

Modifications to electronic properties due to structural changes

b

Topography (distorted structure) а

N.-C. Yeh et al, (2010).

Fouriertransformed structure

Conductance spectra of representative regions

Conductance spectra along the dashed line in the upper left figure.

3.4. Potential applications to light emission & photodetection

Graphene nanoribbons: semiconducting energy gaps may be engineered by the controlling the width, from 0 ~ 200 meV.

• <u>Graphane</u>: semiconducting energy gaps may be engineered by controlling the hydrogen coverage, from 0 ~ 3.5 eV.

Future work: measurements of the I-V characteristics & photocurrents.

Summary

 Novel nanostructures such as strained silicon nano-pillars, semiconducting nanowires and graphene-based nano-devices may be interesting candidates for new types of ultra-high-density ultra-compact sensitive photodetectors, possibly even single-photon-counting detectors.

