

Superconducting single-photon detectors as photon-energy and polarization resolving devices

Departments of Electrical and Computing Engineering Physics and Astronomy, Materials Science and Laboratory of Laser Energetics University of Rochester, Rochester NY 14627

Single Photon Counting Detectors Keck Institute for Space Studies Caltech, Pasadena, CA, January 27, 2010

Nanostructured superconducting single-photon detectors: OUR TEAM

Technical University Delft, Delft, The Netherlands: S. Dorenbos, E. Reiger, R. Schouten, N. Akopian, U. Perinetti, T. Klapwijk and V. Zwiller

University of Rochester, Rochester, NY:

J. Kitaygorsky (now Applied Electromagnetics, Boulder, CO), A. Jukna (now Vilnius Tech. Univ., Vilnius, Lithuania), and Roman Sobolewski

Superconducting Single-Photon Detectors (SSPDs): introduction and motivation.

Energy-resolving capability of SSPDs: statistical approach based on the quantum efficiency dependence on the absorbed photon energy.

Energy- and photon-number resolving capabilities: high-input impedance cryogenic HEMT read-out circuit.

Polarization sensitivity of SSPDs.

Conclusions and outlook

Single-photon detectors: desired properties

- High quantum efficiency (QE reaching 100%)
- Broadband operation (200 nm to >3000 nm)
- Low dark count rates
 - no false/unwanted counts
 - no afterpulsing
- Very high speed
 - fast, picosecond signal rise and recovery
 - no "dead" time between counts
- Photon energy resolving
- Photon number resolving
- Photon polarization resolving

NbN SSPDs are 2-dimensional ROCHESTER -wire, inter-digitated, nanostructures TUDelft

Stripe thickness: 4 nm, width: 120 nm, length: ~0.5 mm. Active device area: 10 x 10 μ m²

The NbN and NbTiN devices were fabricated at the Delft Technical University.

Photon counts result from transient resistive hotspot formation in 2-D stripe

IVERSITY

TUDelft

Single-photon response is based Temperature (K) on the quantum hotspot formation, followed by resistive heating. One optical photon can create a hotspot of up to ~1500 quasiparticles.

SSPD performance parameters

Delft

Photon energy resolving capability of SSPDs

The spectroscopy is achieved by scanning an unknown photon source versus the detector current bias and comparing the result with the set of "calibration" curves.

Reiger et al., J. Sec. Topics QE, (2007)

Photon energy resolving capability of SSPDs (II)

Calibration curves

Laser intensity of each curve was chosen such that at this point, the obtained photoncount rate was approx. 1 MHz. Then, each curve was normalized to exactly 10⁶ cps.

To demonstrate the energyresolving property, we took test curves (black squares) measured for arbitrary intensities of incident photons, and normalized them at same point as the calibration curves.

Correct wavelength can be assigned!

Reiger et al., J. Sec. Topics QE, (2007)

Photon energy resolving capability of SSPDs

For each test curve, the minimum of the sum of squares corresponds to the wavelength assignment.

One problem–any external disturbances within our measurement time window (1-2 min) are critical.

$sum(j) = \sum (x_i - cal_i(j))^2 / cal_i(j)$

Reiger et al., J. Sec. Topics QE, (2007)

Wavelength (energy) resolution: 50 nm.

Test curves	Symbol	700 nm	750 nm	800 nm	850 nm	900 nm	950 nm	1000 nm
#1	-	163	7811	22812	64473	158987	219322	357780
#3		5303	34	3755	24369	82857	122838	217515
# 5	A	17352	3545	24	7032	42720	69536	137118
#7	-4	38175	16227	5868	34	14270	28732	70996
#9		83177	50765	32191	11316	59	1612	15006
# 11	-+-	96165	61828	41631	17736	1347	63	7358
#13	-+-	126994	88303	64930	35211	9277	3240	440

Two-color, photon-energy resolving capability

Can two wavelengths simultaneously detected be resolved?

At low bias currents, both the summed curve and the black curve follow the green line.

At higher bias currents, the slopes of the black and the summed curves start to deviate from the green curve.

With proper calibration and careful analysis, it is possible to distinguish the contribution from the two different wavelengths.

detection is highly desired in quantum optics

UR LLE **※**

Solution suggested by Bell et al. [IEEE Trans. Appl. Supercon. (2007)]:

put an amplifier with high impedance next to SSPD.

Photon-number-resolved

Thus, we will read out the true voltage across the SSPD, which depends on the number of photons, i.e., number of hotspots simultaneously generated.

Cryogenic HEMT read-out for SSPDs

UNIVERSITY of

TUDelft

Cryogenic HEMT read-out enables photon-energy resolution

R122201

We observed statistically significant difference between the dark-count and photon-count (720 nm) histograms, when we used the HEMT read-out.

Mean-pulse amplitudes versus normalized bias current

Reduced bias current

UNIVERSITY of

UDelft

HEMT read-out allows to unanbigously distinguish between photon and dark counts

UNIVERSITY of

TUDelft

UR

IVERSITY of **Dark-count events are due to** vortex-antivortex unbinding **U**Delft in our 2-D superconducting stripes 107 1.2 Pulse amplitude, mV Dark counting rate (s⁻¹) Single NbN stripe $\blacksquare T = 2.0 \text{ K}$ 500 nm wide 1.0 $\odot T = 3.5 \text{ K}$ 10 5 10 µm long T = 4.5 K3.5 nm thick 0.8 103 0.6 0.4 101 **VAP** theory 0.2 $\xi(0) = 6 \text{ nm}$ **JAP** theory 10 -1 0.0 2 5 8 3 7 6 q 0.84 0.88 0.92 0.96 1.00 Temperature, K Reduced bias current Depairing voltage of a vortex pair: **Dark-count rate:** $R_{dk} = \Omega_{VAP} \exp \left| \frac{A(T)}{\varepsilon(l_i)k_{\scriptscriptstyle B}T} \right| \times \left(\frac{J}{2.6.I} \right)^{\frac{A(T)}{\varepsilon(l_j)k_{\scriptscriptstyle B}T}} \qquad V(T,J) = \frac{\Phi_o d\xi J_c}{e} \ln(J/J_c)$

J. Kitaygorsky *et al.,* IEEE TAS, <u>17</u>, 275 (2007).

A. Engel *et al,* Phys. Stat. Sol. C, <u>2</u>, 1668 (2005).

We adjusted the incident laser power, so on average the SSPD detected one photon per pulse, and, occasionally, we observed pulse vacancies (no photon detected) or significantly larger pulses, which are the "suspect," two-photon events.

HEMT read-out for photon number resolution-statistical analysis

UNIVERSITY of

TUDelft

Polarization dependence in SSPDs

The geometry of SSPDs leads to a polarization dependence of the absorption of photons and thus the quantum efficiency.

Polarization dependence: experimental setup

2-section SSPD

Polarization dependence: measurements

Degree of polarization:
$$C = \frac{N_{\parallel} - N_{\perp}}{N_{\parallel} + N_{\perp}} \approx 0.02$$

Polarization dependence: measurements

Spiral SSPD

Degree of polarization:
$$C = \frac{N_{\parallel} - N_{\perp}}{N_{\parallel} + N_{\perp}} \approx 0.02$$

Polarization dependence: quantum efficiency

The imaging polarization detector concept

- Photons with different polarizations are absorbed in different sections of the detector.
- The section in which a photon is absorbed is recognized by the pulse shape (e.g., different L_{kin} of each section).

- SSPDs currently outperform competing optical single-photon counters in the counting rate and dark counts.
- SSPDs are NOT just "click-type" counters:
- multi-sectional devices can be used for photon-number measurements;
- rectangular-meander structures are polarization discriminators;
- statistical analysis allows to extract information of the energy of counted photons.