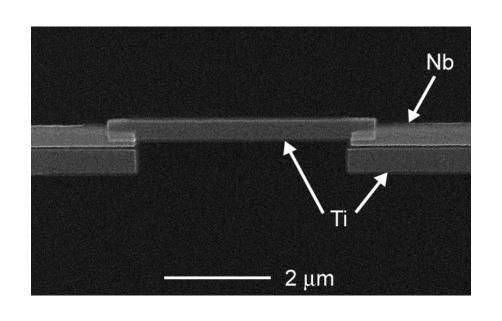
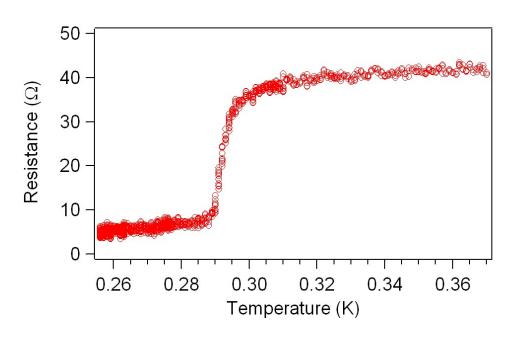

Energy Resolution of THz Single-Photon-Sensitive Bolometric Detectors

Daniel Santavicca,¹ Bertrand Reulet,² Boris Karasik,³ Sergey Pereverzev,³ David Olaya,⁴ Michael Gershenson,⁴ Luigi Frunzio,¹ and Daniel Prober¹


¹Department of Applied Physics, Yale University


²Laboratoire de Physique des Solides, Universite Paris-Sud, Orsay

³Jet Propulsion Laboratory

⁴Department of Physics, Rutgers University

Ti Nanobolometer

Ti nanobridge

 $4 \mu m \times 350 nm \times 70 nm$

$$T_{c} = 0.3 \text{ K}$$

$$R_N \approx 50 \ \Omega$$

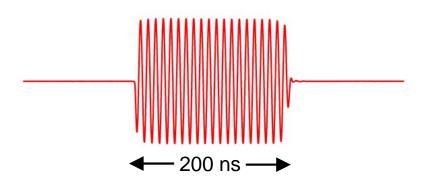
$$\delta E_{th} \sim (k_B T^2 C_e)^{1/2}$$

smaller, colder = more sensitive want
$$\delta E/h \sim THz$$

Challenges of THz Single-Photon Detection

 $\delta E/h \sim THz (\delta E \sim meV)$

Need precise control of incident photon flux over a very wide frequency range

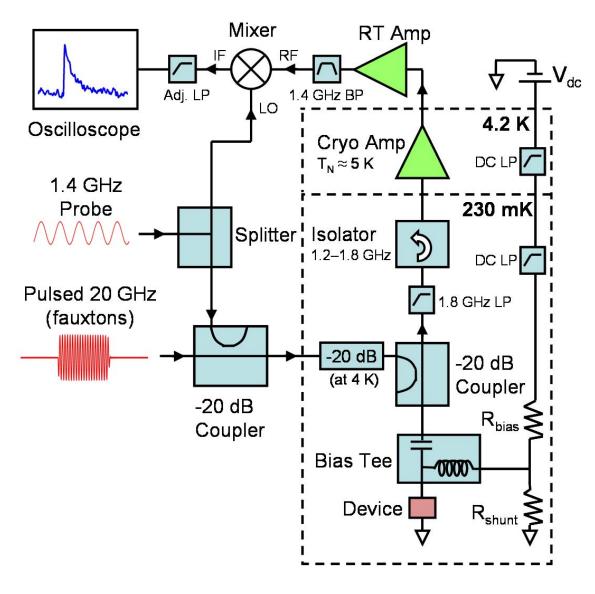

Consider 1-2 THz bandwidth, single-mode detector

300 K blackbody = 3.6 nW, $\sim 10^{12} \text{ photons/sec}$

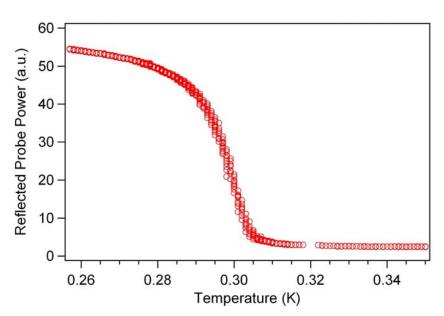
 $4.2 \text{ K blackbody} = 0.8 \text{ fW}, ~10^6 \text{ photons/sec}$

Testing with Fauxtons

Simulate detection of a single high frequency photon with a fast microwave pulse of equivalent absorbed energy: $f_{\text{fauxton}} = E_{\text{abs}}/h$

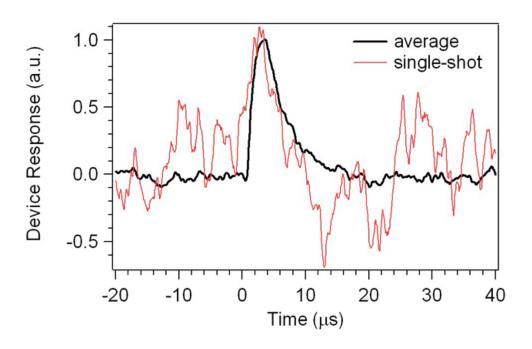


- Device isolated from THz-IR blackbody radiation
- Coupling efficiency can be calibrated precisely with Johnson noise thermometry
- Fauxton frequency can be tuned simply by adjusting the amplitude of the microwave source

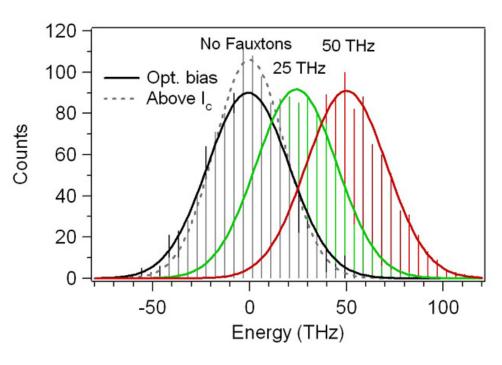


= on-demand source of single THz-IR photons fauxtons!

Testing with Fauxtons



Microwave reflection readout of the device impedance ultra-low-noise amplifier with negligible backaction

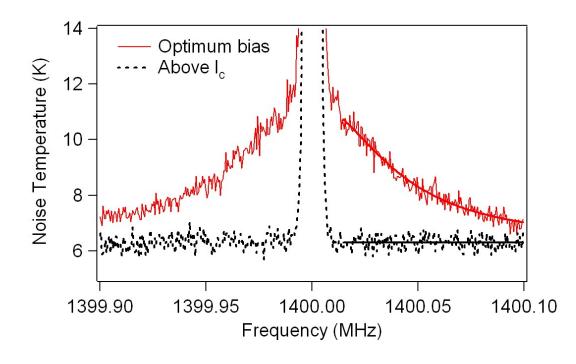


Experimental Schematic

Energy Resolution

Single-shot and averaged response to 50 THz fauxton

Histograms of pulse heights for different fauxton energies; δE above I_c set by amp. noise


$$\begin{split} \delta E_{tot} / h &= 49 \pm 1 \text{ THz} \\ \delta E_{amp} / h &= 43 \text{ THz} \\ \delta E_{intrinsic} / h &\approx 23 \text{ THz} \end{split}$$

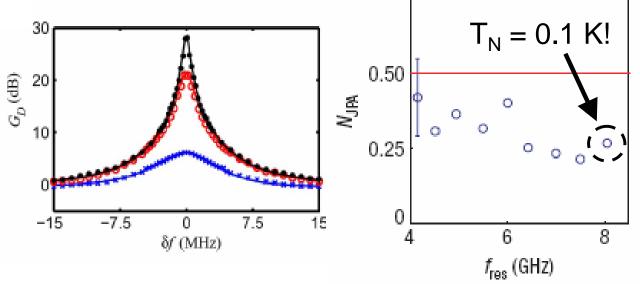
Energy Resolution

$$\delta E = 2\sqrt{2\ln 2} \left[\int_{0}^{\infty} \frac{4df}{NEP^2} \right]^{-1/2}$$

$$NEP_{th} = (4k_BT^2G_{th})^{1/2}$$

$$\delta E_{intrinsic}/h$$
 (0-100 kHz) = 20 THz

Noise measured at mixer input; T_N referred to amplifier input


Measured responsivity $S = 1.7 \times 10^7 \text{ V/W}$

$$\delta E_{tot} / h (0-100 \text{ kHz}) = 50 \text{ THz}$$

Improving δE

Need a lower noise amplifier...

Josephson Parametric Amp. Castellanos-Beltran *et al.* (Colorado/JILA/NIST), *Nature Physics* **4**, 928 (2008)

Also

Josephson Parametric Converter, Bergeal *et al.* (Yale), arXiv 0912.3407 (2009) Josephson Parametric Amp., Yamamoto *et al.* (NEC), APL **93**, 042150 (2008)

DC-SQUID Microwave Amplifier, Spietz et al. (NIST), APL 93, 082506 (2008)

... $\delta E_{total}/h < 1$ THz appears feasible

A Few Words about the Competition

Semiconductor quantum dot with SET readout

Excellent sensitivity – demonstrated detection of single 0.5 THz photons But...

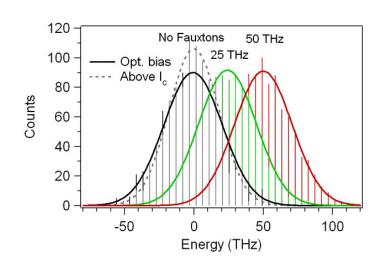
- not energy resolving
- low quantum efficiency
- complex device geometry and readout; no clear approach to multiplexing

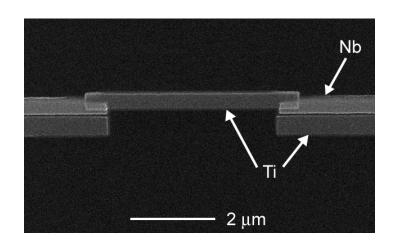
APPLIED PHYSICS LETTERS VOLUME 80, NUMBER 22 3 JUNE 2002

Single-photon detector in the microwave range

O. Astafiev, a),b) S. Komiyama, T. Kutsuwa, and V. Antonov, and V. Antonov, Department of Basic Science, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan

Y. Kawaguchi^{b)} and K. Hirakawa Institute of Industrial Science, University of Tokyo, Rm Ee-201, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan


(Received 19 February 2002; accepted for publication 3 April 2002)


Single-photon counting at microwave frequencies around 500 GHz is demonstrated by using a single-electron transistor (SET) formed by two capacitively coupled $GaAs/Al_xGa_{1-x}As$ parallel quantum dots (QDs). A point contact separating the double QDs allows the prompt escape of an excited electron from one of the QDs to another. The resulting long-lived photoinduced ionization of the QD is detected as a change in the SET current. © 2002 American Institute of Physics. [DOI: 10.1063/1.1482787]

Conclusion

Fauxton characterization technique for ultrasensitive bolometric calorimeters – can serve as a benchmark for more challenging optical experiments

preprint: arXiv:0906.1205

δE < 1 THz appears feasible through reducing the Ti nanobridge volume/T_c + lower noise readout

