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Superconducting devices for 
detection of single photons
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Quantum Information …

� Encodes information in 
quantum mechanical states

� Involves the manipulation and 
measurement of quantum states 
with high fidelity and low loss

� Atoms, Ions, Spins, Superconductors, Cavity-
QED, Photons

� We need a toolbox to generate, manipulate, and 
measure (detect) photons.



Optical photon detector needs in 
Quantum Information

� High Quantum Efficiency
� As high as possible
� Broadband (100nm to 2000nm)

� Low Dark Count rate
� No false counts
� No afterpulsing

� Speed
� Fast recovery
� Fast rise / pulse pair resolution
� Latecy

� Energy Resolving / Photon Number Resolving



Photon Counter vs. Photon Number 
Resolving

Conventional

Same output signal 
for varying photon 

number input 

Photon Number 
Resolving

Output signal 
proportional to photon 

number 
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Superconductivity

� Electrical resistance goes to 
zero at a critical temperature 
Tc

� Critical Current Ic or density 
Jc above which there is 
resistance below Tc

� Critical Field Hc
� Electrons in the 

superconducting ground state 
form Cooper pairs

� Excitations above the ground 
state are known as quasi-
particles, energy ~ 2∆



Superconducting Detector 
Technologies

� “Photon Number Resolving”
� Energy / Photon Number Resolving
� Superconducting Tunnel Junction
� Kinetic Inductance Detector
� Transition-edge Sensor

� “Photon Counter”
� Single photon sensitive
� Superconducting Nanowire Single Photon 

Detector (SNSPD or SSPD)



Transition Edge Sensor (TES)

R

T

Rn

Absorber, C

Thermometer

Weak thermal link, g

Thermal sink
(50 mK)

Energy
deposition

• Calorimetric detection of UV/optical/IR photons:
• Temperatures are ~100 mK to ensure low noise and high sensitivity.
• Absorber and thermometer are the same (superconducting W thin film)
• Microfabrication techniques



Superconducting nanowire Single 
Photon Detector (SNSPD or SSPD)

• Current Biased
• Very fast ( 10’s of ps)

NbN

Moscow State Pedagogical University

10 µµµµm

4nm thick
<100nm wide



System Detection Efficiency

� Optical coupling efficiency
� Single mode fiber
� Fiber to device coupling

� Absorption efficiency into the active 
area/region

� Internal quantum efficiency / conversion 
efficiency

� Trigger efficiency (i.e. electronics and 
thresholds)



Superconducting 
Fabrication Facility (TES)

� 2700 sq ft class 100 space
� I-line 5x lithography
� E-beam lithography
� Reticle generation
� Sputter deposition (x2)
� ECR PECVD deposition 
� LPCVD (x2)
� Thermal oxide / diffusion (x2)
� Thermal deposition (x2)
� RIE (x2)
� Plasma etching
� Ion mill etching
� 3 inch wafers



Optical Structures to Enhance  
Detection Efficiency

• Optical stack increases probability of absorption in tungsten
• Careful measurements of optical constants for all thin film layers
• Materials compatibility below 1 K

~15 % reflected

~65 % transmitted

~20 % absorbed
Si

20 nm W

Rosenberg D. et al. IEEE Trans. Appl. Supercon. 15 2 575 (2005)

non-absorbing
dielectrics

highly reflective
metallic mirror

Si

~1% reflected
20 nm W



Fiber Coupling

� Compatibility with large Temperature change



TES Signal

• Device is voltage biased
• Current through device is pre-amplified using a 
cryogenic SQUID array amplifier
• Signal can then be processed using RT 
electronics

Output signal is proportional to number 
of absorbed photons

• Optimized now for photon-number resolution, not 
speed (τrise~100 ns, τfall~10 µs)
• Absorption events show good distinguishability
• Much slower than APDs

~95% System Detection Efficiency
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Picture of System



New Materials

� Higher speed
� Rise time
� Recovery time

� Tunability for different 
wavelengths
� Dual band devices
� 850nm
� 1064nm
� Optimal for loop-hole 

free test of Bell’s 
inequality

a-Si
Tungsten
Silicon oxide
Aluminum
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New alignment scheme

W TES

• Zirconia sleeve’s inner diameter matches the fiber ferrule
• Zirconia sleeve’s inner diameter matches the circular 
chips with the center positioned tungsten TES

FC/FC
Zirconia sleeve

Zirconia
Fiber ferrule

Deep RIE etch Bosch SF 6/C4F8 process:  
circular chips with precise dimensions

FC/FC mating connectors



Alignment continued…



Unique Features of TES detectors

• Photon Number Resolution
• Low Noise

– NEP < 10-19 W/√Hz (limited by stray light)
– No Dark Counts

• “High” QE at telecommunication 
wavelengths
─ >95% end-to-end measured at 1550nm

─ AR coatings give no limit, in principle

─ Tunable wavelength response by adjustment of 
coatings

• “Slow” speed
─ Decay time ~1µsec

─ 10 MHz clocked systems can be used
─ Faster speeds possible with materials research 

and electrical readout improvements

Limited by blackbody radiationn (BLIP)

50 microns



How do you make SNSPD’s
more practical?

Cryogen-free operation !!!

10 µµµµm

+



Packaging, Optics and 
Temperature

Fiber coupling can 
be done in ways 
similar to the 
TES.

Temperature 
stability is very 
important for dark 
counts



NIST Packaging + Moscow devices

System details:

Fiber
inputs

Coax
outputs

•Hadfield et al., Opt. Expr. 13 , 1086 (2005)

•Cryogen-free refrigerator (~4 K)
4 SSPDs

•Fiber coupled

•Detection Efficiency
1–6% (900 nm – 1800 nm)

(Includes fiber coupling losses)

•Low Dark Counts
100 Hz → <10 Hz

•No Afterpulsing or re-emission!



Fun with photons

� TES
� Photon statistics

� Number distribution (TES) of a Poisson source

� Quantum Optics
� Squeezed light photon number distribution statistics

� SNSPD
� Time correlated single photon counting, TCSPC
� Higher order intensity correlations



Photon Statistics
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Signal to Noise ratio

� How can you use a low efficiency detector 
to do anything useful?

_ _ *
Signal to Noise

dark count rate jitter

η=

� TES has 10 to 100x bigger DE
� SNSPD has a jitter 1000x smaller!!!
� Inversely related to error rate in a QKD 

system



Fiber

SSPD

Cryostat

Lifetime Measurements

InGaAs/GaAs QW

Mono-
chromator
@ 935 nm

82 MHz

Gaussian response + Few dark counts
→ Tolerate low efficiency
→ Identify multiexponential processes

Timing Electronics

Stop

Start

•Stevens et al., APL 89, 031109 (2006)
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Lifetime Measurements: Novel Materials

Single InGaAs Quantum Dot
λλλλDetect = 902 nm

InGaAs grown on InP
λλλλDetect = 1650 nm

•SSPD works where Si won’t
(λλλλ > 1 µµµµm) •Single-photon sensitivity



Fiber

Jitter & Efficiency vs. Wavelength
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• λλλλ-dependent IRF shape
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Fiber

Jitter & Efficiency vs. Wavelength
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Entangled Pair Generation in Fiber

• SSPDs ungated, free-run mode

• Coincidence-to-accidental
ratio (CAR) > 80:1

• Entangled pair 2-photon
visibility > 98%

• No background corrections!Time Bin

C
ou

nt
s



Correlated Pair Generation in PPLN

• 10 GHz clock

• Count rate 4.7 MHz +

• Coincidence-to-accidental
ratio (CAR) > 4000:1
→ 50× improvement



Quantum Key Distribution at Stanford

• 1st secure key at 10 GHz

• Longest fiber QKD link
12.1 bits/s over 200 km

• 17 kbits/s over 105 km
→ 100× previous best

Time 100 ps

C
ou

nt
s

10 ps
bins

Raw
data



Quantum Key Distribution around 
the world

Stanford, Yamamoto NEC, NICT, Japan

BBN Technologies, 
Cambridge, MA

� Provably secure technique 
for key   generation

� Bound the amount of 
information   an 
eavesdropper could obtain

� Telecommunication band
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SPAD+SSPD:
g(2)(0) = 0.10

2 SSPDs:
g(2)(0) = 0.08

SSPDs

Cryostat

Fiber

Fiber
Start

Stop

DE ~ 2%
Dark Counts < 10 Hz

Semiconductor
Quantum Dot @ 4 K
902 nm

Ti:Sapphire
Laser



Multi-pixel SNSPD  by MIT and 
MIT-LL



Higher Order Correlation Functions –
Psuedothermal light
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Summary of Detector Experiments to 
date

� TES with SPDC in a HOM interferometer
� TES in a QKD link
� TES to herald optical CAT states
� SNSPDs in a QKD link
� SNSPDs to herald photons from an SPDC source at 

1550nm
� SNSPDs to perform time-correlated single photon 

counting (TCSPC)
� SNSPDs to perform free-space LIDAR
� SNSPDs to measure single photon sources
� SNSPD to characterize entanglement sources
� SNSPD to characterize CNOT gates
� SNSPD to measure higher order intensity correlations



Collaboration with Blas Cabrera’s group at Stanford University

active
W sensor

Al 
voltage

rails

Optical Photons



Stanford - NIST collaboration

•February 2000
•4-pixel TES optical bolometer array
• Kelvinox dilution refrigerator
• Used digital feedback electronics
• Each photon time-stamped to a fraction of 
a microsecond with GPS
• Data from faint periodic and quasi-
periodic objects

McDonald Observatory



2.7 m aperture200 µm UV
fiber optic

20 µm X 20 µm
TES w/ Tc~70 mK

grin &
spherical

lens

3 m length
cold loop

Crab pulsar

McDonald Observatory 107”
February 1-7, 2000
NIST & Stanford

• Crab pulsar
• PSR 0656
• Eskimo nebula
• Geminga
• ST-LMI white dwarf
• Hercules X1
• calibration stars



Device Packaging



Crab Pulsar Data



Background Subtracted 
Energy vs Phase

Phase timing
histogram

Photon energy
histogram





Digital Electronics for SQUID 
readout



Pixel Performance and 
Multiplexing

� Operating resistance is ~1 ohm
� Power dissipation <100 fW per pixel
� Bias current is small (~ 100 nA)
� Modest energy resolution
� Slow count rates
� Pixels are small (25 microns x 25 microns)

� Small current steering switches at each pixel
� Inductors for Nyquist filtering



Schematic

� One coax can be used to 
FDM 128 channels which 
use CDM to mux 128 TES
� 16k per coax
� 5 MHz BW per carrier

� 64 coax = Mega Pixel

� 40 µs time constants
� 1 kcps
� Lenslet array



Conclusions

� Superconductivity offers another technique for 
achieving high performance optical detectors

� Much more work is needed to make the detectors 
usable in real experiments and systems

� Basic research and development into device 
performance is still needed.
� What are the fundamental limits to QE, recovery time, jitter, 

dark counts?
� What are the practical limits?

� Optical TES can be multiplexed reasonably with CDM
� Mega-pixel with count rates 1 kcps / active element 

(switch) at each pixel


