

Optical Characterization of the Quantum Capacitance Detector (QCD)

J. Bueno*, N. Llombart**, P. K. Day, J. Kawamura, K. Cooper, and P. M. Echternach

Jet Propulsion Laboratory, California Institute of Technology

* present address: Centro de Astrobiología (CSIC-INTA), Madrid (Spain)

** present address: School of Optics, Universidad Complutense de Madrid, Madrid (Spain)

Many thanks to: Matt Shaw, Richard Muller, Jonas Zmuidzinas, Per Delsing

This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Funding for this research was provided by a grant from the National Security Agency.

Outline

- 1.- Introduction
- Proof-of-Concept of the QCD
 - Dark NEP
- 2.- Coupling Radiation to the QCD
 - Optical System
 - Experimental Setup
- 3.- Quantum Capacitance Detector Characterization
 - Signal, noise and NEP
 - Quantum Capacitance Trace
 - Conclusions

Proof-of-concept of the QCD

- Quasiparticles injected with a SIS junction
 - NEP on the order of 10⁻¹⁸ W/Hz^{1/2}
 - Large scalability
- Next step: couple light to the detector

Detector Scheme

Submillimeter photon Antenna Junctions Tank circuit RF line Absorber Island

- Radiation is absorbed by the antenna which is coupled to the absorber
- Cooper-pairs are broken and quasiparticles tunnel through the junctions
- The quasiparticle density is proportional to the quasiparticle tunneling rate (our measurable quantity)

Optical System (I)

- Double-dipole antenna
- Frequency = 1.5THz $(\lambda = 200 \mu m)$

Optical System (II)

 $\cdot Z = 32\Omega$

- Resonance @ 1.5 THz
 - 30% bandwidth

Optical System (III)

Detector

- Cooled down with a dilution refrigerator, experiments done at 100mK
- Nb λ/2 resonator, Au antenna with Al absorber with Nb plug for quasiparticle trapping
 QCD out of Al/AlOx/Al

Resonance

- Resonance frequency = 3.328118 GHz
 - Q = 150000
 - Peak depth = 6.5 dB

Qubit signal

- Measured with a Lock-in amplifier technique
- Qubit biased with an AC tone at 25kHz

Sending light to the QCD

- Step the blackbody temperature from 5 to 40K
 - Resonance moves towards the right
- Consistent with a drop of the quantum capacitance signal

Measuring the noise

- Noise measured with a spectrum analyzer at the resonance frequency
- Phase and amplitude noise measured for each temperature
- Ellipse of noise multiplied by 50 in the figure

Phase NEP

- Blackbody radiation couples to the detector in the single mode
- Filter bandwidth = 10%
- Transmission = 60%
- Resonance frequency shifts 400Hz/K
- NEP about 10⁻¹⁷ W/Hz^{1/2}

Thermal behavior of the resonator

- Two level systems could be the cause of the frequency shift
- Step the mixing chamber temperature
- In order to get the same frequency shift, the mixing chamber should be at 300mK (too high!)

Dark run

- Close all the windows to the experiment
 - Step the blackbody temperature
- Resonance does NOT change at all
- Different shape due to magnetic flux trapped

Quantum Capacitance Trace (I)

- Send a ramp to the gate and look at the signal with an oscilloscope
- No clear quantum capacitance peaks visible
- However, the signal drifts when an offset is applied to the ramp

Quantum Capacitance Trace (II)

- Step the gate voltage and use a lock-in technique to look at the signal
- No clear quantum capacitance peaks visible.
- Step the blackbody temperature. Some peaks grew, some peaks decreased
- No clear conclusion can be drawn

Quantum Capacitance Trace (III)

$$C_c = 0.45 \text{ fF}$$

- Voltage divider
- V_{CPW} = V_{gate} C_c / C_{spiral}
- This is possibly the reason why we do not see a clear quantum capacitance trace

Room for Improvement

- Adding an extra line for gating the qubit and biasing it at its degeneracy point
- Designing a new optimized optical system
 - Coupling the QCD to a better quality resonator

Conclusions

- 1.- Light has been coupled to the QCD
- Antenna couple radiation has been successfully detected by the QCD
 - Response in both the phase and the amplitude
- 2.- Optical NEP in the order of 10⁻¹⁷ W/Hz^{1/2} have been obtained for the phase signal
 - Comparable to current detectors?
 - 3.- Lots of room for improvement
 - Separate gate line for the qubit
 - Better optical system
 - Better quality resonator