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Abstract. Geiger-mode avalanche photodiodes (GM-APDs) use the avalanche mechanism of semiconductors
to amplify signals in individual pixels. With proper thresholding, a pixel will be either “on” (avalanching) or “off.”
This discrete detection scheme eliminates read noise, which makes these devices capable of counting single
photons. Using these detectors for imaging applications requires a well-developed and comprehensive expres-
sion for the expected signal-to-noise ratio (SNR). This paper derives the expected SNR of a GM-APD detector in
gated operation based on gate length, number of samples, signal flux, dark count rate, photon detection effi-
ciency, and afterpulsing probability. To verify the theoretical results, carrier-level Monte Carlo simulation results
are compared to the derived equations and found to be in good agreement. © 2014 Society of Photo-Optical Instrumentation
Engineers (SPIE) [DOI: 10.1117/1.OE.53.8.081904]
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1 Introduction
Array-based Geiger-mode avalanche photodiodes (GM-
APDs) have been developed by Massachusetts Institute of
Technology Lincoln Laboratory and characterized by the
Center for Detectors to determine their suitability for space-
based imaging applications, specifically for exoplanet mis-
sions.1 A GM-APD can count single photons, which is
very useful for low-light imaging applications. In Geiger-
mode (digital) operation, the APD simply records whether
or not an avalanche occurred in a given exposure window
(a gate) and repeats the process over many samples. From
these samples, an avalanche probability can be calculated,
and from that probability, the estimated flux is derived.2

Since this operation is fundamentally different from
charge-coupled device (CCD) or CMOS detectors, the
form of the signal-to-noise ratio (SNR) expression is funda-
mentally different as well. To derive the expression, the
detection cycle and unique sources of noise must be fully
understood. This paper derives the expression for the
SNR of measurements from a GM-APD detector measuring
intensity via gated operation. The final form of the expres-
sion depends on dark count rate (DCR), afterpulsing prob-
ability (paft), photon detection efficiency (PDE), gate length,
number of gates (ngates), and signal flux. The inclusion of
afterpulsing probability also results in a means to estimate
the signal when significant afterpulsing is present. The equa-
tion is also useful for choosing the best operating conditions
for such a detector (and similar detectors), which might
include small amounts of afterpulsing as a trade-off for
higher SNR with higher duty cycle.

It is important to note that while the majority of GM-APD
applications use arrival time–based measurements or analog
avalanche totals to count photons, this detector measures
intensity by measuring the avalanche probability during
a set exposure window (usually on the order of

microseconds). SNR has been presented for time-based mea-
surements previously for similar devices,3 but it is important
to emphasize that the operation is fundamentally different for
the device presented here. For this detector, the measurement
is actually of the probability of an avalanche given a certain
exposure window, and all resolution of time is lost. Timing
jitter is irrelevant, and the output from each pixel is digital.
Afterpulsing effects on noise have been investigated by
others,4 though no integration of afterpulsing statistics into
SNR for a gated, digital device has been presented. Given the
fundamental difference in operation between most GM-
APDs and the device presented in this paper, a new expres-
sion for SNR must be derived from fundamentally different
first principles.

Noise equivalent power (NEP) for this detector is not pre-
sented in this paper, given the lack of a closed-form solution
for the sensitivity. Most currently accepted NEP expressions
for GM-APDs are irrelevant, given the inclusion of the time-
measurement paradigm.5 Other accepted expressions for
NEP are derived with the assumption that the intensity output
from the pixel is analogue, not digital (i.e., number of ava-
lanches is given rather than avalanche probability), which
results in a completely different relationship between signal
and noise.6

1.1 Avalanche Mechanism

At reverse bias voltages above some breakdown voltage
(VBR), a self-sustaining avalanche can be established.
Greater detail on the avalanche behavior of this device has
been previously presented by its developers.7 An avalanche
resulting from one photogenerated electron is indistinguish-
able from one initiated by a larger number of photogenerated
electrons arriving simultaneously.

It is important to note that even in Geiger mode, there is a
probability that the avalanche may dwindle in its earliest
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stages and result in a nondetectable signal. While gain is an
important metric for linear-mode operation, Geiger-mode
operation is better characterized by the probability that the
avalanche will become self-sustaining, referred to as the ava-
lanche initiation probability. This probability can be calcu-
lated independently in theory.8 However, the avalanche
initiation probability is a component of the overall PDE,
the measurement of which is usually sufficient for testing
and characterization purposes.

1.2 Detection Cycle

For this device, the detection cycle is clocked externally and
reset at regular intervals. Each exposure is composed of five
distinct stages, repeated many times over. The first stage is
the arming of the device, when the bias on the pixel is
increased above the breakdown voltage. A set delay (the sec-
ond stage) is then observed, which constitutes the exposure
gate. After the gate, a recording pulse is asserted (the third
stage) that transfers the state of the pixel (1 or 0) to the read-
out circuit. Immediately after the recording pulse is com-
plete, the pixel is forcefully disarmed (the fourth stage),
meaning that the voltage is set below the breakdown voltage.
A final delay (the fifth period) is observed after the disarm
signal, called the hold-off time. This delay is usually to mit-
igate afterpulsing events. At the end of the hold-off time, the
pixel is armed again and the cycle repeats. In an ideal device,
the forced disarm would be unnecessary because avalanches
between gates would not affect the occurrence of avalanches
during the gates. In practical use, forced disarm is required
because of the afterpulsing mechanism, which can induce an
avalanche in a subsequent gate with a characteristic exponen-
tial decay probability.

1.3 Afterpulsing

Afterpulsing occurs when a trap (an intermediate energy
state that exists in the band gap of the material) releases a
carrier that initiates an avalanche in the absence of a photo-
generated electron or dark count. Carriers are released from
traps at random times, with the average detrapping time
defined as the trap lifetime. The length of the trap lifetime
depends on the type of trap and its energy level. Avalanching
carriers can remain in these states longer than the hold-off
time of the device, becoming free again during the next
detection cycle. The electric field immediately accelerates
the newly mobile electron or hole, which may initiate an ava-
lanche of carriers in the absence of photon signal.9

1.4 Monte Carlo Simulations

A Monte Carlo simulation was created to calculate the
observed SNR for any detector characteristics or operational
settings. The simulation works from a detailed list of inputs,
including DCR, paft, PDE, gate length (tgate), signal flux, and
ngates. Carriers are generated from a random number Poisson
distribution for each gate, based on the PDE, signal flux, and
DCR. For gates where the number of generated carriers is>0,
the simulation records a 1. The total number of avalanches
(total number of 1’s) is divided by ngates to calculate the ava-
lanche probability given the DCR [see Eq. (6)]. The experi-
ment is repeated 107 times, and then the mean and standard
deviation of the results are calculated, giving the SNR.

To add afterpulsing, a simple binomial random number
generator is used to generate a carrier with probability
paft, given that the simulation recorded a 1 in the previous
gate. In this case, the avalanche probability is calculated
with Eq. (29) [which simplifies to Eq. (6) if paft ¼ 0],
and SNR is calculated by dividing the mean by the standard
deviation of the 107 trial results.

2 SNR Derivation Neglecting Afterpulsing
The first step in the derivation of any SNR expression is
defining the processes of the detection cycle (in the case
of photon-counting detectors, the physical meaning of the
string of 1’s and 0’s). To simplify the relationships, the initial
assumptions are that PDE is unity and there are no other
sources of noise (these nonidealities will be added later).
Instead of counting each 1 as a single photon, the ratio of
1’s to the total number of gates is the probability of one
or more photons arriving within a single gate. The probabil-
ity of np photons in a specific interval for an average number
of photons per gate λp is

PðnpÞ ¼
e−λpλ

np
p

np!
: (1)

For a Poisson distribution, since each trial is memoryless
(independent),

Pðnp ¼ a or np ¼ bÞ ¼ Pðnp ¼ aÞ þ Pðnp ¼ bÞ

¼ e−λp
�
λap
a!

þ λbp
b!

�
; (2)

and the total probability that np equals zero or any positive
integer is 1, or

X∞
np¼0

e−λpλ
np
p

np!
¼ 1. (3)

The ratio of 1’s to the total number of gates can, therefore,
be defined as

n1 0s
ngates

¼ Pðnp ≥ 1Þ ¼ 1 − Pðnp ¼ 0Þ ¼ 1 −
e−λpλ0p
0!

¼ 1 − e−λp : (4)

Since dark carrier generation is also a Poisson process, the
average number of dark carriers per gate, λd, is additive in the
exponential function. Changing np to n to represent the total
number of carriers per gate (assuming dark current is the only
source of noise and that there is no photon loss) and λp to λ ¼
λp þ λd to reflect the average number of total carriers per
gate,

n1 0s

ngates
¼ Pðn ≥ 1Þ ¼ 1 − Pðn ¼ 0Þ ¼ 1 −

e−λλ0

0!
¼ 1 − e−λ;

λ ¼ λp þ λd: (5)

From this simplified solution, the estimate of the average
number of photons per gate is
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λ̂p ¼ − ln

�
1 −

n1 0s

ngates

�
− λ̂d: (6)

In practice, λ̂d may be estimated by applying Eq. (4) to
measurements made under dark conditions. The estimate
of the total number of photons incident on a pixel over an
exposure (the fluence) with PDE less than unity is

PDE · λ̂tot ¼
�
− ln

�
1 −

n1 0s

ngates

�
− λ̂d

�
· ngates: (7)

The variance of the estimate is slightly more complicated.
To simplify the equations, let n1 0s∕ngates ¼ x and PDE ·
λ̂tot ¼ y. The variance of x is the variance of a binomial
distribution based on the number of gates (or trials),
ngates, and the probability of an avalanche during a gate,
pðgate ¼ 1Þ ¼ p. Note that x is only an estimate of p, so
they are denoted differently

σ2x ¼
ngates · pð1 − pÞ

n2gates
¼ pð1 − pÞ

ngates
: (8)

The variance of the total number of 1’s is the Bernoulli
trial variance, pð1 − pÞ, multiplied by the number of trials,
ngates. However, x is the ratio of total number of 1’s to the
total number of gates, so the variance must be divided by the
square of the scale variable, resulting in Eq. (8).

Now the variance of the estimate (which is a function of x)
must be defined. To begin, the expected value of yðxÞ is
defined in terms of the probability density function of x,
or fðxÞ, as follows:

E½yðxÞ� ¼
Z∞
−∞

yðxÞfðxÞdx: (9)

If fðxÞ is concentrated about the mean (a valid assumption
here since x is the outcome of a series of Bernoulli trials, a
binomial distribution), then fðxÞ is assumed to be negligible
outside the range (μ–ε, μþ ε), where μ is the mean of fðxÞ
and ε is a bounding variable, and yðxÞ becomes yðμÞ

E½yðxÞ� ¼ yðμÞ
Zμþε

μ−ε

fðxÞdx ¼ yðμÞ: (10)

This estimate may be improved by a polynomial expan-
sion.10

yðxÞ ¼ yðμÞ þ y 0ðμÞðx − μÞþ · · · þynðμÞ ðx − μÞn
n!

: (11)

Inserting Eq. (11) into Eq. (10) and neglecting higher-
order terms for a parabolic approximation,

E½yðxÞ� ¼ yðμÞ þ y 0 0ðμÞ ðx − μÞ2
2

¼ yðμÞ þ y 0 0ðμÞ σ
2
x

2
:

(12)

To find the variance of y,

σ2y þ μ2y ¼ E½y2ðxÞ�; (13)

μ2y ¼ E½yðxÞ�2 ¼
�
yðμÞ þ y 0 0ðμÞ σ

2
x

2

�
2

¼ y2ðμxÞ þ yðμxÞy 0 0ðμxÞσ2x þ ½y 0 0ðμxÞ�2
σ4x
4
; (14)

E½y2ðxÞ� ¼ y2ðμxÞ þ
�
d2

dx2
y2ðμxÞ

�
σ2x
2
E½y2ðxÞ�

¼ y2ðμxÞ þ σ2x½jy 0ðμxÞj2 þ yðμxÞy 0 0ðμxÞ�: (15)

Since σx is always <1, the σ4x term in Eq. (14) is negli-
gible. Substituting the simplified Eqs. (14) and (15) into
Eq. (13) and solving for σ2y, the variance of y is shown in
Eq. (16):10

σ2y ¼ jy 0ðμxÞj2σ2x. (16)

Equation (16) is the variance of the estimate of the num-
ber of photons. The derivative of yðxÞ [Eq. (6)] is

y 0ðμxÞ ¼
1

1 − μx
: (17)

Recall that μx is the mean of the observed avalanche prob-
ability distribution pðgate ¼ 1Þ ¼ p. Substituting Eqs. (8)
and (17), the total variance for the exposure is

σ2tot ¼ jy 0ðμxÞj2σ2xn2gates ¼
p

ð1 − pÞ ngates: (18)

Since the output of each gate records either a 1 or a 0 in
the case of a photon-counting mode detector, each gate may
be modeled as a Bernoulli trial with the probability of a 1
equal to p ¼ μx and the probability of a 0 equal to q ¼
1 − p. Assuming that only one electron is necessary to regis-
ter a 1, p is defined by Eq. (5). Now σ2y may be evaluated as a
function of the average number of photogenerated carriers
per gate (λp) and the average number of dark-current-gener-
ated carriers per gate (λd), substituting Eq. (5) and incorpo-
rating PDE

σ2tot ¼

0
B@ E

h
n1 0s
ngates

i
1 − E

h
n1 0s
ngates

i
1
CAngates ¼ ½eðPDE·λpþλdÞ − 1�ngates: (19)

Therefore, the SNR for an intensity measurement using a
gated GM-APD with no afterpulsing is

SNR ¼ PDE · λp · ngatesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

ð1−pÞ · ngates
q ; (20)

where p ¼ 1 − e−ðPDE·λpþλdÞ.
PDE is the photon detection efficiency (the probability

that a photon will be absorbed and the resulting carrier will
initiate an avalanche), λp is the number of photons absorbed
per gate, and λd is the number of dark current carriers
generated per gate. Together, PDE, λp, and λd give the prob-
ability, p, that a gate will record an avalanche. ngates is the
number of gates in the exposure (note that SNR ∝ ffiffiffiffiffiffiffiffiffiffingates

p ).
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Any dead time losses are built into the signal and the noise
because the estimates are always based on multiples of per-
gate fluence. For example, if the estimate of the mean num-
ber of photons per gate is 2 (assume that PDE is 1), the num-
ber of gates is 100, but the duty cycle is 50%, then the
estimate of the total number of photons in the exposure is 2 ·
100 ¼ 200 (instead of the total incident fluence of 400).

Figure 1 shows an overlay of the Monte Carlo results and
the analytical solution in Eq. (20) for SNR versus the total
fluence, normalized to the ideal shot noise limit of SNR.
Ideal SNR is the shot-noise limited case, where SNR ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fluence

p
(fluence is the number of signal photons arriving

at the pixel during the exposure). The simulation agreed with
the theoretical data in both mean and standard deviation.

The roll-off at low fluence is due to background counts
(DCR), which start to contribute significantly to the noise
when the number of background electrons per gate (10−5

in Fig. 1) is ∼10% of the signal (photogenerated) electrons.
The roll-off at high fluence is due to high avalanche prob-
ability, where the proportional variance of the estimate
increases sharply due to the exponential relationship between
avalanche probability and photon fluence. As the gate photo-
generated electron (PE) fluence approaches and surpasses 1,
the SNR drops sharply. In this regime, a very small change in
measured avalanche probability translates to a very large
change in estimated fluence. The curve peaks at

ffiffiffiffiffiffiffiffiffiffi
PDE

p
because the data are normalized to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fluence

p
(the shot-

noise limited case).

3 SNR Derivation Including Afterpulsing
Since there is no read noise in a digital GM-APD detector,
Eq. (19) correctly models the variance of the estimate
neglecting afterpulsing. Some researchers choose to blank
the gates following a recorded event to reduce the afterpuls-
ing noise.11 This may be useful for instances of high after-
pulse probabilities, but the drawback is a significant decrease
in the number of gates (the number of samples) and the duty

cycle of the device. Depending on the afterpulsing probabil-
ity, blanking may not increase the SNR of the measurement.
Therefore, it is beneficial to quantify the contribution of
afterpulsing to the noise. To start, the probability of a
gate equal to 1 must be amended to include the probability
of an afterpulse carrier. The new definition of p (the prob-
ability of a gate equal to 1) is

Pðgate ¼ 1Þ ¼ Pðafterpulse ∪ 1jλÞ
¼ PðafterpulseÞ þ Pð1jλÞ

− PðafterpulseÞPð1jλÞ: (21)

Here, PðafterpulseÞ is the probability that one or more
afterpulse carriers are present (or become present) during
the gate, and pð1jλÞ is the probability that one or more photo-
generated or dark carriers are present during the gate (where
λ ¼ PDE · λp þ λd). The probability of an afterpulse carrier
being present during the gate, while dependent on the pre-
vious gate avalanche probability, is statistically independent
of the current gate. Therefore, they are not mutually exclu-
sive and the probability of either happening is not a simple
sum. This leads to the subtraction of the cross term in
Eq. (21). pð1jλÞ is equal to Eq. (4), but the derivation of
P(afterpulse), which will be referred to as paft going forward,
is more involved. The derivation of avalanche probability
given a certain afterpulse probability requires a few assump-
tions. For this derivation to be valid, the following must
be true.

1. The pixels are disarmed at the end of the gate and no
avalanche events occur between gates (see Sec. 1.2).

2. There is no (or insignificant) dependence on gates pre-
vious to the gate immediately preceding to the gate of
interest (i.e., the probability of an avalanche in the cur-
rent gate is only a function of the state of the gate
immediately before it and the photo- and dark carrier
generation process).

3. There is no significant delayed cross talk from neigh-
boring pixels (i.e., afterpulsing occurs only as a result
of the same pixel’s previous state, not a neighboring
pixel’s previous state).

Physically, paft is the integral of the exponential decay
function of afterpulse arrival time from the beginning of
the gate to the end of the gate (i.e., from thold-off to thold−off þ
tgate if t ¼ 0 is the time of the previous avalanche). With pas-
sive quenching and clocking relative to the avalanche, this
estimate has zero error. However, with gated clocking of
the circuit, paft theoretically changes from gate to gate
because the effective quench time is dependent on when
the previous gate’s avalanche occurred. In gated operation,
the precise avalanche arrival time is unknown, though an
average value of paft may be sufficient since the measure-
ment involves many gates over the course of the exposure.

The first assumption listed above is easily confirmed by
determining the method of operation of the device in ques-
tion, while the third can be confirmed with avalanche corre-
lation tests between neighboring pixels. The second
assumption does imply some constraints in the amount of
afterpulsing in order for this analysis to be relevant. The
assumption hinges on the behavior and amount of traps in

Fig. 1 This plot shows Monte Carlo results versus analytical solution
for the relative signal-to-noise ratio (SNR) of a Geiger-mode ava-
lanche photodiode (GM-APD) in photon-counting mode over a
range of fluence values. Dark count rate is 1 Hz. The dashed vertical
line notes the fluence at which photogenerated signal and noise con-
tributions are equal. Gate length is 10 μs, exposure time is 1 s, photon
detection efficiency is 60%, and duty cycle is ∼85%. Relative SNR is
normalized to the ideal SNR, the shot-noise limited case where
SNR ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fluence
p

.
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the pixel. If the exponential decay function of detrapped car-
riers extends past two arm periods, then there is a certain
probability that an avalanche will occur due to an avalanche
in a gate more than one arm period before. If one assumes
that 1% is a negligible probability for an afterpulse-induced
avalanche two arm periods later, then it is easy to calculate
the maximum decay lifetime allowed for assumption 2 to be
valid. For example, in an exposure with tgate ¼ 10 μs and an
85% duty cycle, the total arm period is ∼11.8 μs. If we
assume that dark- or photo-induced avalanches occur near
the beginning of the gate on average (Poisson arrival statis-
tics), then the effective time between populating a trap and
the beginning of the next gate is roughly equal to the arm
period. Therefore, the decay lifetime must be less than or
equal to 2½− lnð0.01Þ�tarmperiod, or in this case, the decay life-
time must be ≤ 5.1 μs. For valid results, the measured paft

value (using the expression derived in this paper) should be
no greater than the integral of the exponential decay over the
following gate, or paft ¼ 0.09. However, as tgate decreases
and duty cycle increases, the maximum valid paft also
increases, especially if the average avalanche time moves
further from the beginning of the gate.

Having established the assumptions made and their impli-
cations, the derivation can continue. To begin, the avalanche
probability must be redefined to include afterpulsing proba-
bility. The probability of an afterpulse in the first gate
(n ¼ 0) is zero, since there were no previous gates.
Therefore, the probability of an avalanche is

P0ðgate ¼ 1Þ ¼ 0þ ð1 − e−λÞ − 0 ¼ 1 − e−λ: (22)

For the second gate (n ¼ 1), the probability becomes
more complicated

P1ðgate ¼ 1Þ ¼ paftð1 − e−λÞ þ ð1 − e−λÞ
− paftð1 − e−λÞð1 − e−λÞðgate

¼ 1Þ ¼ ð1 − e−λÞð1þ pafte−λÞ: (23)

The first term, paftð1 − e−λÞ, is the probability that an
afterpulse carrier is present in the second gate, and the sec-
ond term, ð1 − e−λÞ, is the probability that a photogenerated
electron or dark carrier is present in the second gate (recall
that λ ¼ PDE · λp þ λd). The third term is the cross term that
must be subtracted since the first two terms (probabilities)
are independent of one another [see Eq. (21)].

Moving on to the third gate (n ¼ 2), a pattern begins to
emerge

P2ðgate¼ 1Þ¼paftð1−e−λÞð1þpafte−λÞþð1−e−λÞ
− ð1−e−λÞð1þpafte−λÞð1−e−λÞ

¼ ð1−e−λÞ½1þpafte−λþðpafte−λÞ2�: (24)

That pattern continues for the fourth gate (n ¼ 3)

P3ðgate¼1Þ¼paftð1−e−λÞ½1þpafte−λþðpafte−λÞ2�
þð1−e−λÞ−ð1−e−λÞ½1þpafte−λþðpafte−λÞ2�
×ð1−e−λÞ¼ð1−e−λÞ½1þpafte−λ

þðpafte−λÞ2þðpafte−λÞ3�: (25)

The expression can now be simplified to sum notation.

Pðgate ¼ 1Þ ¼ ð1 − e−λÞ
XN
n¼0

ðpafte−λÞn; (26)

where pðgate ¼ 1Þ is the avalanche probability, N is the total
number of gates in the exposure (ngates), and n is the number
of an individual gate. paft is the probability that an afterpuls-
ing carrier is present during a given gate, and λ ¼
PDE · λp þ λd. For large values of N, the upper limit of
the sum can be assumed infinite since paftð1 − e−λÞ is always
<1, and higher-order terms will be very small. Making these
assumptions, the sum in Eq. (26) becomes a Maclaurin series
that converges

X∞
n¼0

ðpafte−λÞn ¼
1

1 − pafte−λ
. (27)

Therefore,

Pðgate ¼ 1Þ ¼ 1 − e−λ

1 − pafte−λ
; (28)

for large values of ngates. This probability (the probability of
one or more electrons being present in a gate given a certain
afterpulsing probability) is based on a compound Poisson
distribution that skews from the standard distribution given
the same mean.4

When paft ¼ 0, the probability of a gate equal to 1 is sim-
ply Eq. (5). Similarly, when λ ¼ PDE · λp þ λd ≫ 1, the
probability of a gate equal to one is Eq. (5) again; the addi-
tional number of gates triggered due to afterpulse carriers
approaches zero because the other carrier generation rates
are very high. Figure 2 shows the relationship between ava-
lanche probability, gate fluence, and afterpulse probability.

Since paft < 1 and e−λ ≤ 1, Eq. (26) quickly converges for
large values of N. As long as the total number of gates is
>103, the error due to assuming an average avalanche prob-
ability will be negligible even for very high values of paft.

To find a new estimate for the average number of photons
per gate, Eq. (5) must be solved again, but with the new
expression for pðn ≥ 1Þ. n1 0s∕ngates (avalanche probability)
is now equal to Eq. (28), and the estimate of the mean num-
ber of photogenerated carriers per gate (λp) is now

λ̂p ¼ − ln

� 1 − nones
ngates

1 − paft
nones
ngates

�
− λ̂d: (29)

Going back to Eq. (16), the variance of the estimate is a
function of the first derivative of the estimate and the vari-
ance of n1 0s∕ngates ¼ x. The Markov chain will be used to
derive this variance.

The Markov chain is a method of ascertaining the distri-
bution of predicted events that are dependent on the present
state and nothing else.6 In this case, the present state is the
n’th gate value, while the predicted value is for the (nþ 1)’th
gate (dependent on the present state). This particular process
is discrete, which simplifies the derivation.

To start the derivation, the probabilities of every state tran-
sition must be defined. Figure 3 shows a state diagram for the
case of afterpulsing and gate values.
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P01 is the probability of a 1 in the (nþ 1)’th state given a
0 in the n’th state, and so on for the other probabilities. The
sum of the probabilities leaving a state must equal 1.
Equations (30) to (33) show the expressions for each prob-
ability (λ is the total electron fluence from photon and dark
current processes during a single gate):

P01 ¼ 1 − e−λ; (30)

P00 ¼ 1 − P01 ¼ e−λ; (31)

P11 ¼ paft þ P01 − paftP01 ¼ 1 − e−λð1 − paftÞ; (32)

P10 ¼ 1 − P11 ¼ e−λð1 − paftÞ: (33)

Since afterpulsing has no effect on gates following a
recorded zero (per the assumptions in this derivation), the
probability for p00 and p01 are straightforward Poisson prob-
abilities. For p11, the probability of an afterpulse or a λ-gen-
erated carrier is the sum of both probabilities minus the cross
term. The equation for p10 follows from p11. These proba-
bilities comprise the matrix M, which is defined to calculate
the probability of a one and zero based on the probabilities
for the previous gate [see Eq. (34)].M is defined such that its
columns are composed of the probabilities leaving each state
in Fig. 3. M is used to complete Eq. (34), which defines a
useful relationship between the avalanche probabilities
defined above

M ¼
�
P00 P10

P01 P11

�

×
�
p0ðnþ 1Þ
p1ðnþ 1Þ

�
¼

�
P00 P10

P01 P11

��
p0ðnÞ
p1ðnÞ

�
: (34)

In a steady-state approximation (many gates), the proba-
bility of 1 or 0 is independent of the outcome of a gate many
gates before. Therefore, p0ðnþ 1Þ and p0ðnÞ approach p0,
just as p1ðnþ 1Þ and p1ðnÞ approach p1, as shown in
Eq. (35)

�
P0

P1

�
¼

�
P00 P10

P01 P11

��
P0

P1

�
: (35)

The determinant of M is zero as a result of the defined
state relationships, and p1 þ p0 ¼ 1. Using these relation-
ships, Eq. (35) can be solved to find p1 and p0 (the steady-
state probabilities for 1 and 0, respectively). The expression
for p1 in Eq. (36) should match the expression previously
derived in Eq. (28), as a check:

�
P0

P1

�
¼
�

e−λ e−λð1−paftÞ
1−e−λ 1−e−λð1−paftÞ

��
P0

P1

�
→P1e−λð1−paftÞ

¼P0ð1−e−λÞ;P1 ¼
1−e−λ

1−pafte−λ
;

P0 ¼ 1−P1 ¼
e−λð1−paftÞ
1−pafte−λ

: (36)

To calculate the variance of the number of counts, the
standard definition of variance will be used and interpreted
in terms of M and the state probabilities, as shown in Eq. 37

σ2c ¼ E½c2� − ðE½c�Þ2 ¼
XN
i¼1

XN
j¼1

p1ðiÞp1ðjÞ−p1ðiÞp1ðjÞ

¼
XN−1

k¼−ðN−1Þ
ðN − jkjÞðP1p1ðkÞ − P2

1Þ

¼ ðN − 0ÞP1ð1 − P1Þ þ 2P1

XN−1

k¼1

ðN − kÞ½p1ðkÞ − P1�

¼ NP1P0 þ 2p1

XN−1

k¼1

ðN − kÞ½p1ðkÞ − P1�; (37)

where N is the number of gates (ngates), k ¼ i − j, and p1ðkÞ
is the probability of a 1 given that a 1 was recorded k gates
before. p1ðkÞ is also, by definition, the bottom right corner
term of Mk, or

p1ðkÞ ¼ ½ 0 1 �Mk

�
0

1

�
: (38)

To find a closed-form solution for Mk, and therefore for
p1ðkÞ,M must be diagonalized, or a matrix A must be found
such that

A−1MA ¼ D Mk ¼ A−1DkA; (39)

Fig. 2 This plot shows avalanche probability versus gate fluence (in
electrons per pixel per gate) for various afterpulsing probabilities. At
low and high fluence levels, the avalanche probability converges for
all values of paft.

Fig. 3 A state diagram for gate values from the n’th to (n þ 1)’th gates
is shown.
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where the columns of A are the eigenvectors ofM and D is a
diagonal matrix of the eigenvalues of M.12 The eigenvalues
of M and the matrices A and D are defined in Eqs. (40) to
(42)

eigenvalues ¼
�

1

pafte−λ

�
; (40)

A ¼
�
e−λð1−paftÞ

1−e−λ −1
1 1

�
; (41)

D ¼
�
1 0

0 pafte−λ

�
: (42)

Since D is a diagonal matrix, Dk [Eq. (39)] is calculated
simply as a matrix of the k’th power of the individual terms.
Referring back to Eqs. (38) and (39), p1ðkÞ can be calculated
as in Eq. (43)

p1ðkÞ ¼ ½ 0 1 �A−1DkA

�
0

1

�

¼ ð1 − e−λÞ þ e−λð1 − paftÞðpafte−λÞk
1 − pafte−λ

p1ðkÞ ¼
p01 þ p10ðpafte−λÞk

1 − pafte−λ
: (43)

As k approaches infinity (many gates), p1ðkÞ approaches
p1, the steady-state value of avalanche probability.
Substituting Eq. (43) into Eq. (37), and using some geomet-
ric series identities, the variance of the total number of counts
is

σ2c ¼ P1P0

×
�
ngates þ 2

pafte−λ½ðpafte−λÞN þ ngatesð1−pafte−λÞ− 1�
ð1−pafte−λÞ2

�
:

(44)

Since ngates is assumed to be large (>103 as expressed
previously), the expression simplifies to

σ2c ¼ ngatesP1P0

�
1þ 2

pafte−λ

1 − pafte−λ

�
: (45)

It is interesting to note that the variance in Eq. (45)
is a scaled version of the standard binomial variance
(ngatesp1p0), just as the carrier distribution per gate is a
skewed version of the standard Poisson distribution when
afterpulsing is significant. Equation (45) is the variance of
the total number of counts, but the variance of x (the ava-
lanche probability) is scaled by the total number of gates

σ2x ¼
σ2c

n2gates
¼ P1P0

ngates

�
1þ 2

pafte−λ

1 − pafte−λ

�
: (46)

Equation (16) provides the correct expression for the vari-
ance of the estimate, substituting the new avalanche proba-
bility given in Eq. (28)

λ̂p ¼ yðμxÞ ¼ − ln

�
1 − μx

1 − paft · μx

�
: (47)

Solving Eq. (29) in terms of λ and assigning y ¼ λ and
μx ¼ pðgate ¼ 1Þ from Eq. (28), the total variance for the
entire measurement is

σ2y ¼ jy 0ðμxÞj2σ2xn2gates;

σ2y ¼ ngatesP1P0

�
1 − paft

P0ð1 − paft · P1Þ
�
2
�
1þ 2

pafte−λ

1 − pafte−λ

�
;

(48)

where ngates is the total number of gates in the exposure, p1 is
the avalanche probability, and p0 is the probability that a gate
does not record an avalanche ð1 − p1Þ. paft is the probability
that an afterpulse carrier is present during a gate, and
λ ¼ PDE · λp þ λd (the sum of the mean number of photo-
generated electrons and mean number of dark carriers
present in any given gate). When paft is zero, the variance of
the estimate simplifies to Eq. (16) as expected. Combining
Eq. (48) with the first half of Eq. (19), the SNR of a GM-
APD in photon-counting mode is

SNR ¼ PDE · λp · ngatesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1P0

�
1þ 2 pafte−λ

1−pafte−λ

��
1−paft

P0ð1−paft·P1Þ

�
2

ngates

s ;

where

P1 ¼
1 − e−λ

1 − pafte−λ
; P0 ¼

e−λð1 − paftÞ
1 − pafte−λ

;

λ ¼ PDE · λp þ λd:

(49)

Note that Eq. (49) simplifies to Eq. (20) (SNR neglecting
afterpulsing) when paft ¼ 0.

Figure 4 shows an overlay of Monte Carlo simulation
results and the theoretical solution according to Eq. (49)
for the same detector. The simulation agreed with the theo-
retical data in both mean and standard deviation.

It is important to note that, as explained in the beginning
of Sec. 3, an actual value of paft ¼ 0.75 or even 0.25 is
unlikely for most operating conditions if the assumptions
stated at the beginning of Sec. 3 hold. However, since the
simulation is based on the same assumptions as the derived
expression for SNR, and the inputs are given without regard
to feasibility, the comparison of simulated to calculated
results in Fig. 4 is valid. The exaggerated values of paft

more easily illustrate the overall trends in SNR behavior
across a range of fluence values as the afterpulsing probabil-
ity changes.

The earlier onset of roll-off at high fluence for larger val-
ues of paft is due to an effective decrease in saturation level.
Given the same fluence, the avalanche probability will
increase with increasing afterpulse probability. The roll-off at
low fluence is still due to background noise (DCR). While
the relative SNR still has a maximum of

ffiffiffiffiffiffiffiffiffiffi
PDE

p
for the

case of paft ¼ 0, the maximum for cases where paft > 0
decreases.
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4 Conclusions
An expression was derived for the SNR of a given intensity
measurement using a GM-APD in gated (photon-counting)
mode. The expression is a function of signal level, PDE,
DCR, afterpulsing probability, gate length, and the number
of gates sampled (ngates). The theoretical results agreed with
carrier-level Monte-Carlo simulations across a variety of
input values. Notably, afterpulsing probability has been inte-
grated into the SNR equation and an expression for estimat-
ing the signal given significant afterpulsing is established.
This is significant because it allows theoretical comparisons
between current technologies [electron-multiplying CCDs
(EMCCDs), linear-mode APDs (LM-APDs), CCDs] and
GM-APD array-based imaging detectors, even when after-
pulsing is significant. The expression does have limitations,
however, given the assumptions made in the derivation.
The most important of these assumptions is that afterpulsing
is only dependent on the state of the gate immediately prior
to the gate in question (which excludes the possibility of an
avalanche due to a trap releasing a carrier from two or more
gates prior). For most devices and operations, this
assumption is reasonable, though measured results should
be checked against the limits imposed by the stated
assumptions.

The equation is also useful for choosing the best operating
conditions for such a detector (and similar detectors), which
might include small amounts of afterpulsing as a trade-off for
higher SNR with higher duty cycle. Given any combination

of detector characteristics and operational settings, the scien-
tific imaging potential of a GM-APD in gated mode can now
be evaluated. The derived expression is an important tool
going forward in the search for the next great detector for
photon-counting applications.
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of a GM-APD in photon-counting mode versus gate fluence for multi-
ple afterpulsing probabilities. The dashed vertical line notes the flu-
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equal. Relative SNR is normalized to the ideal SNR, the shot-noise
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