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Quantifying entanglement in a 68-billion-
dimensional quantum state space
James Schneeloch 1,5, Christopher C. Tison1,2,3, Michael L. Fanto1,4, Paul M. Alsing1 &

Gregory A. Howland 1,4,5

Entanglement is the powerful and enigmatic resource central to quantum information pro-

cessing, which promises capabilities in computing, simulation, secure communication, and

metrology beyond what is possible for classical devices. Exactly quantifying the entanglement

of an unknown system requires completely determining its quantum state, a task which

demands an intractable number of measurements even for modestly-sized systems. Here we

demonstrate a method for rigorously quantifying high-dimensional entanglement from

extremely limited data. We improve an entropic, quantitative entanglement witness to

operate directly on compressed experimental data acquired via an adaptive, multilevel

sampling procedure. Only 6,456 measurements are needed to certify an entanglement-of-

formation of 7.11 ± .04 ebits shared by two spatially-entangled photons. With a Hilbert space

exceeding 68 billion dimensions, we need 20-million-times fewer measurements than the

uncompressed approach and 1018-times fewer measurements than tomography. Our tech-

nique offers a universal method for quantifying entanglement in any large quantum system

shared by two parties.
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Achieving a quantum advantage for information processing
requires scaling quantum systems to sizes that can pro-
vide significant quantum resources, including entangle-

ment. Large quantum systems are now realized across many
platforms, including atomic simulators beyond 50 qubits1–3,
nascent superconducting and trapped-ion-based quantum
computers4,5, integrated-photonic circuits6–10, and photon pairs
entangled in high-dimensional variables11–16.

As quantum-information-based technologies mature, it will
become useful to separate the physical layer providing quantum
resources (e.g., trapped ions, photons) from the logical layer that
utilizes those resources. For example, many imperfect qubits may
form one logical qubit17,18 or thousands of atoms may coherently
act as a single-photon quantum memory19,20. As with classical
communication and computing, protocols and algorithms will be
implemented in the logical layer with minimal concern for the
underlying platform. Because real-world systems are varied and
imperfect, the quantum resources they provide must be char-
acterized before use17.

Certifying an amount of entanglement in a large quantum
system is an essential but daunting task. While entanglement
witnesses21,22 and Bell tests23 can reveal entanglement’s presence,
quantification generally requires a full estimation of the quantum
state24. Beyond moderately sized states, the number of parameters
to physically measure (i.e., the number of the measurements)
becomes overwhelming, making this approach unviable for cur-
rent and future large-scale quantum technologies.

Any practical method for quantitative entanglement certifica-
tion must require only limited data. Two ideas can dramatically
reduce the needed measurement resources. First is the develop-
ment of quantitative entanglement witnesses, which bound the
amount of entanglement without full state estimation25–28. In a
recent landmark experiment, 4.1 entangled bits (ebits) of high-
dimensional biphoton entanglement was certified using partial
state estimation29. One ebit describes the amount of entangle-
ment in a maximally entangled, two-qubit state24.

Second, prior knowledge can be exploited to economize sam-
pling. Certain features, or structure, are expected in specific sys-
tems. In highly entangled quantum systems, for example, some
observables should be highly correlated, the density matrix will be
low rank, or the state may be nearly pure. Such assumptions can
be paired with numerical optimization to recover signals sampled
below the Nyquist limit. One popular technique is compressed
sensing30, which has massively disrupted conventional thinking
about sampling. Applied to quantum systems, compressed sen-
sing reduced measurement resources significantly for tasks,
including tomography31–37 and witnessing entanglement38,39.

Computational recovery techniques have substantial down-
sides. Because they are estimation techniques, conclusions drawn
from their results are contingent on the veracity of the initial
assumptions. They are therefore unsuitable for closing loopholes
or verifying security. Numerical solvers are often proven correct
under limited noise models and require hand-tuned parameters,
potentially adding artifacts and complicating error analysis.
Finally, the computational resources needed become prohibitive
in very large systems. The largest quantum systems characterized
using these approaches remain considerably smaller than state-of-
the-art.

Here we provide an approach to entanglement quantification
that overcomes these downsides. First, we improve an entropic,
quantitative entanglement witness to operate on arbitrarily
downsampled data. Then we develop an adaptive, multilevel
sampling procedure to rapidly obtain compressed distributions
suitable for the witness. Crucially, our sampling assumptions are
independent of the entanglement certification, so our method can
guarantee security. Because we avoid numerical optimization,

error analysis is straightforward and few computational resources
are needed.

Results
Entropic witnesses of high-dimensional entanglement. Entan-
glement is revealed when subsystems of a quantum state are
specially correlated. A common situation divides a system
between two parties, Alice and Bob, who make local measure-
ments on their portion. Given two mutually unbiased, continuous
observables bx and bk, they can measure discrete joint probability
distributions P(Xa, Xb) and P(Ka, Kb) by discretizing to pixel sizes
ΔX and ΔK. Here bold notation indicates that X and K may
(though need not) represent multidimensional coordinates. For
example, X and K might represent cartesian position and
momentum that can be decomposed into horizontal and vertical
components such that X= (X, Y) and K= (K(x), K(y)).

A recent, quantitative entanglement witness40 uses these
distributions to certify an amount of entanglement:

d log2
2π

ΔXΔK

� �
� HðXajXbÞ � HðKajKbÞ � Ef ; ð1Þ

where, for example, H(A|B) is the conditional Shannon entropy
for P(A, B). Ef is the entanglement of formation, a measure
describing the average number of Bell pairs required to synthesize
the state. Equation (1) does not require full-state estimation but
depends on an informed choice of bx and bk. Still, in large systems,
measuring these joint distributions remains oppressive. For
example, if Xa has 100 possible outcomes, determining P(Xa,
Xb) takes 1002 joint measurements. Describing quantum
uncertainty with information-theoretic quantities is increasingly
popular41,42. Entropies naturally link physical and logical layers
and have useful mathematical properties. In particular, many
approximations to the joint distributions can only increase
conditional entropy. Because Eq. (1) bounds Ef from below, any
such substitution is valid.

Improving an entropic entanglement witnesses for use with
limited data. We use two entropic shortcuts to improve the
entanglement witness. First, if the system is highly entangled, andbx and bk are well chosen, the joint distributions will be highly
correlated; a measurement outcome for Xa should correlate to few
outcomes for Xb. The distributions are therefore highly com-
pressible. Consider replacing arbitrary groups of elements in P
(Xa, Xb) with their average values to form a multilevel, com-
pressed estimate ~PðXa;XbÞ. By multilevel, we mean that the new,
estimated distribution will appear as if it was sampled with
varying resolution—fine detail in some regions and coarse detail
in others. Because coarse graining cannot decrease conditional
entropy, Eq. (1) remains valid for ~PðXa;XbÞ and ~PðKa;KbÞ
(see Supplemental Material: Proof arbitrary coarse-graining can-
not decrease conditional entropy).

Good estimates for ~PðXa;XbÞ and ~PðKa;KbÞ can be efficiently
measured by sampling at high resolution in correlated regions
and low resolution elsewhere. Note that the original (P) and
estimate (~P)) are full correlation matrices with N elements, but
only M � N values measured to specify ~P. The witness is valid
for arbitrary downsampling; it works best when the approximate
and actual distributions are most similar but can never
overestimate Ef or allow false positives.

Second, if the observables are multi-dimensional such that they
can be decomposed into d marginal, component observables (e.g.,
horizontal and vertical components) bx ¼ ðx̂ð1Þ; x̂ð2Þ; :::; x̂ðdÞÞ
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(similar for bk), the conditional entropies have the property
HðXajXbÞ �

Xd
i¼1

HðXðiÞ
a jXðiÞ

b Þ; ð2Þ

with equality when P(Xa, Xb) is separable. If we expect nearly
separable joint-distributions, the reduced, marginal joint-

distributions PðXðiÞ
a ;XðiÞ

b Þ can be separately measured but still
capture nearly all of the correlations present. For example, in a
two-dimensional cartesian scenario, we might separately measure

horizontal correlations P(Xa, Xb), PðKðxÞ
a ;KðxÞ

b Þ and vertical

correlations P(Ya, Yb), PðKðyÞ
a ;KðyÞ

b Þ. For d-component observa-
bles, this is a dth power reduction in the number of
measurements. Like the first shortcut, this approximation also
cannot overestimate Ef.

Combining both improvements, our new quantitative entan-
glement witness isXd

i¼1

log2
2π

ΔðiÞ
X ΔðiÞ

K

 !
� ~HðXðiÞ

a jXðiÞ
b Þ � ~HðKðiÞ

a jKðiÞ
b Þ

" #
� Ef : ð3Þ

Proof-of-concept experimental set-up. As a test experimental
system, we use photon pairs entangled in their transverse-
spatial degrees of freedom43,44, where the transverse plane is
perpendicular to the optic axis. Our test bed, given in Fig. 1a,
creates photon pairs via spontaneous parametric down-
conversion (see “Methods”). Generated photons are positively
correlated in transverse-position and anti-correlated in
transverse-momentum. This state closely approximates the
original form of the Einstein–Podolsky–Rosen paradox.
Because position bx ¼ ðx̂; ŷÞ and momentum bk ¼ ðk̂ðxÞ; k̂ðyÞÞ
(where bk ¼ bp=�h) observables are continuous, this state is very
high dimensional.

After creation, the twin photons are separated at a beam
splitter and enter identical measurement apparatuses, where a
basis selection system allows for interrogating position or
momentum. A digital micromirror device (DMD)—an array of
individually addressable micromirrors—is placed in the output
plane. By placing patterns on the signal and idler DMDs and
using coincidence detection, rectangular regions of the position or
momentum joint-distributions are sampled at arbitrary
resolution.
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Fig. 1 Experimental set-up for adaptive measurements. a An entangled photon source produces spatially entangled photon pairs, which are separated and
routed through basis selection optics that switch between measuring transverse-position or transverse-momentum. Computer-controlled digital
micromirror devices and photon-counting detectors perform joint spatial projections at up to 512 × 512 pixel resolution. b shows a simulated, true position
joint-distribution of P(Xa, Xb) at 128 × 128 pixel resolution, while c–g show its simulated, adaptively decomposed estimate ~PðXa;XbÞ as it is refined to higher
detail via quad-tree decomposition. When the joint-intensity in a block exceeds a user-defined threshold, it is split into four sub-quadrants and the process
is recursively repeated, rapidly partitioning the space to obtain a compressed distribution from very few measurements
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Adaptive, multi-level data acquisition. We measure joint-

distributions ~PðXa;XbÞ, ~PðYa;YbÞ, ~PðKðxÞ
a ;KðxÞ

b Þ, and
~PðKðyÞ

a ;KðyÞ
b Þ. Finding compressed distributions requires a

multilevel partitioning of the joint-space that is not known a
priori. Our adaptive approach is inspired by quad-tree image
compression45. An example is shown in Fig. 1b–g. First, all
DMD mirrors are directed toward the detector to obtain a total
coincidence rate RT. Then the joint-space is divided into four
quadrants (c), which are independently sampled. If the count
rate in the ith quadrant exceeds a threshold αRT (0 ≤ α ≤ 1), the
region is recursively split and the process is repeated. The
algorithm rapidly identifies important regions of the joint-space
for high-resolution sampling.

We set the maximum resolution of our system to 512 × 512
pixels-per-photon for a 5124-dimensional joint-space. The
recovered joint-distributions in position and momentum are
given in Fig. 2a–d. Figure 2e, f show ~PðXa;XbÞ with the
partitioning overlaid. These display the expected strong position
and momentum correlations. A histogram showing the number
of partitions at various scales is given in Fig. 2g; most partitions
are either 1 × 1 or 2 × 2 pixels in size. Only 6456 partitions are
needed to accurately cover the 5124-dimensional space—an
astonishing 20-million-fold improvement versus using the
unimproved witness. Over 1021 measurements are needed to
perform full, unbiased tomography.

The entanglement witness (Eq. (3)) applied to the data in Fig. 2
is shown in Fig. 3. For short acquisition times, there is a
systematic bias toward estimating a large Ef. This occurs because
many of the poorly correlated regions have not yet accumulated
any detection events, resulting in a systematic bias toward low
conditional entropies. Statistical error is low in this region
because the highly correlated regions have high count rates and
rapidly reach statistical significance. With additional measure-
ment time, the initial bias diminishes and statistical error
decreases. To our knowledge, 7.11 ± .04 ebits is the largest
quantity of entanglement experimentally certified in a quantum
system. More than 14 maximally pairwise-entangled logical
qubits are needed to describe an equal amount of entanglement.
We do not require advanced post-processing such as numerical
optimization, estimation, or noise reduction; however, we do

post-select on coincident detection events and optionally subtract
accidental coincidences (see “Methods”). Our witness does not
explicitly require any post-processing and is suitable for use in
adversarial scenarios given a pristine experimental system.

The performance of our technique as a function of maximum
discretization resolution is shown in Fig. 4. Figure 4a shows the
approximate distribution partition number as a function of
discretization dimension and the improvement factor over naive
sampling. Figure 4b shows the certified Ef, with and without
accidental subtraction, along with the ideal Ef for our source
under a double-Gaussian approximation44. Because our pump
laser is not Gaussian (Fig. 1a), the actual Ef is slightly less but
difficult to simulate. Error bars enclosing two standard deviations
are scarcely visible. For low resolution, <1000 measurements
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witness entanglement. Progressively refining to higher effective
resolution allows more entanglement to be certified until the
maximum is reached.

Discussion
We have shown an efficient method for performing information-
based entanglement certification in a very large quantum system.
An alternative, important metric for quantifying entanglement in
high-dimensional systems is the entanglement dimensionality, or
Schmidt rank, which describes the number of modes over which
the entanglement is distributed22,46–48. In contrast, entanglement
measures quantify entanglement as a resource of entangled bits
without regard for their distribution. Efficiently certifying the
entanglement dimensionality faces many of the same problems as
certifying a number ebits, such as the intractability of full
tomography and the desire to avoid side effects from prior
assumptions. Recently, Bavaresco et al. used measurements in
only two bases to efficiently certify over nine entangled dimen-
sions between orbital-angular-momentum entangled photon
pairs without special assumptions about the underlying state49.

The number of entangled dimensions and the number of
entangled bits are complementary but distinct characterizations
of entanglement50. If a density matrix cannot be decomposed into
pure states with Schmidt rank <d, then the state is at least d-
dimensionally entangled. However, a d-dimensional entangled
state may possess an arbitrarily small amount of entanglement.
Consider a system with a large Schmidt rank but where one

coefficient of the Schmidt decomposition is much larger than the
others. This system will have a large entanglement dimensionality
but require few entangled bits to synthesize. In this way, a given
entanglement dimensionality D provides an upper bound on the
entanglement of formation Ef such that 0<Ef � log2 D. In con-
trast, a given Ef provides a lower bound to the entanglement
dimensionality D � 2Ef , describing the situation where all D
dimensions are maximally entangled. Our quantitative witness
therefore also certifies entanglement dimensionality but may
dramatically underestimate when the target system is not near-
maximally entangled (e.g., with additive noise or non-uniform
marginals). In our case, we certify 27.11 ≥ 138 maximally entan-
gled dimensions with background subtraction and 23.43 ≥ 10
maximally entangled dimensions without background subtrac-
tion. To our knowledge, 10 entangled dimensions is the largest
certified entanglement dimensionality without assumptions about
the state.

Our approach shows a path forward for certifying quantum
resources in large quantum systems, where we exploit prior
knowledge without conventional downsides. We show the power
of an information-theoretic approach to characterizing quantum
systems, and how compression can be leveraged without com-
putational signal recovery. Though the method presented here is
limited to Einstein–Podolsky–Rosen-type systems where entan-
glement is shared by two parties, we expect that similar techni-
ques for many-body systems utilizing higher-order correlations
will soon follow.

Methods
Experimental apparatus. The 810-nm, spatially entangled photon pairs are pro-
duced via spontaneous parametric downconversion (SPDC)44. The pump laser is a
405-nm diode laser (CrystaLaser DL405-025-SO) attenuated to 7.9 mW with a 356
μm (x) × 334 μm (y) beam waist. A spectral clean-up filter (Semrock Versachrome
TBP01-400/16) removes unwanted the 810-nm light. The pump laser is not spa-
tially filtered. The nonlinear crystal is a 3-mm-long BiBO crystal oriented for type-
I, degenerate, collinear SPDC. The crystal is held at 32.3 °C in an oven for long-
term stability. A low-pass interference filter (Semrock LP442) removes remaining
pump light, followed by a telescope relay system (f1= 50 mm, f2= 100 mm) that
magnifies the SPDC field ≈2×. A half-waveplate and polarizing beamsplitter allow

switching between imaging (bx) and Fourier-transforming (bk) beam-paths; a beam
block is placed in the unused path.

The DMDs (TI Lightcrafter 4500) are computer controlled via a digital video
port (HDMI). A 512 × 1024 physical-pixel area was used for data given in this
manuscript. Because the DMD has twice the vertical pixel density, this corresponds
to a square area. The 10-mm effective focal length, aspheric lenses (Thorlabs
AC080-010) couple light into 100 micron core multi-mode fibers connected to
photon-counting detector modules (Excelitas SPCM-AQ4C-10). The 810/10 nm
bandpass filters (Thorlabs FBS810-10) are placed before the fiber coupling. A time-
correlated single-photon counting module (PicoQuant HydraHarp400) produces
histograms of photon-pair relative arrival times. We post-select on coincident
detections within a 1-ns coincidence window centered on the histogram peak. With
all DMD mirrors pointed toward the detectors, there are approximately 26,400
total coincidences/s.

Data collection. The apparatus must be adjusted to separately measure the four

reduced, joint-probability distributions P(Xa, Xb), P(Ya, Yb), PðKðxÞ
a ;KðxÞ

b Þ, and
PðKðyÞ

a ;KðyÞ
b Þ. For example, to access the horizontal, joint-position distribution P

(Xa, Xb), we adjust the half-waveplates to direct light down the imaging beam-paths
so the DMDs lie in an image plane of the nonlinear crystal. To access a particular,
rectangular element of the distribution, local, one-dimensional “top-hat” patterns
are placed on signal (a) and idler (b) DMDs that only vary horizontally. In the
regions where light should be directed to the detectors, all vertical pixels are used.
The local images’ outer-product defines the rectangular region of the joint-space P
(Xa, Xb) that is being sampled.

To instead access the vertical, joint-position distribution P(Ya, Yb), local DMD
patterns are used that only vary vertically. The joint-momentum distributions are
similarly sampled, with the half-waveplates instead adjusted to send light down the
Fourier-transforming optical path so that the DMDs sit in the far-field of the
nonlinear crystal.

Adaptive sampling algorithm. For each configuration, experimental data are
stored in nodes in a quad-tree decomposition of P whose levels describe
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Fig. 4 Entanglement quantification versus maximum resolution. a shows
the number of partitions required as a function of maximum allowed
resolution and the improvement over the uncompressed approach. b shows
the amount of entanglement captured as the maximum resolution
increases. We see the progressive nature of the technique, which witnesses
entanglement with few measurements at low resolution but more
accurately quantifies it with further refinement. Our results approach the
ideal maximum measurable value Ef= 7.68 ebits for our source
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increasingly fine detail. The ith node corresponds to a square area of ~P at location
ðxia; xibÞ with span wi

a ¼ wi
b ¼ w. Nodes are sampled by placing the corresponding,

one-dimensional local patterns on the DMDs and generating a coincidence his-
togram during acquisition time Ta= 0.5 s. Coincidences Ci are counted within a 1-
ns coincidence window centered on the coincidence peak; accidental coincidences
Ai are counted in a 1-ns window displaced 2 ns from the coincidence window.
Coincidence and accidental values are appended to a list each time the node is
sampled. The estimated count rate Ri ¼ Cih i=ϵiTa, where ϵi is a calibrated, relative
fiber coupling efficiency. Optionally, Ai can be subtracted from Ci for accidental
removal. Uncertainty is computed by assuming Poissonian counting statistics for Ci

and Ai and applying standard, algebraic propagation of error through the calcu-
lation of the entanglement quantity (Eq. (3)).

The data collection algorithm consists of a partitioning phase followed by an
iterative phase. During partitioning, the algorithm repeatedly iterates through a
scan-list of leaves of the tree. Node i is considered stable when sgn(αRT− Ri) is
known to at least β standard deviations of certainty, where splitting threshold α
(0 ≤ α ≤ 1) and stability criterion β are user-chosen heuristics. Stable nodes are no
longer measured. If a node is stable and Ri ≥ αRT, the node is split into four equal-
sized sub-quadrants, which are initially unstable and added to the scan-list.
Optionally, a maximum resolution (maximum tree depth) may be set.

The transition to the iterative phase occurs when the percentage of unstable
leaves is <Γ, a user-chosen parameter. At this point, stability is ignored and all leaf
nodes are scanned repeatedly and guaranteed to have the same total acquisition
time. Various final stopping criteria can be used; we chose a fixed total run time.
Note that heuristic parameters α, β, and γ may be changed during operation if
desired. For the data shown in this manuscript, α= 0.002, β= 2, and Γ= 0.15 with
a 30-h runtime.

The probability distribution ~P is computed by uniformly distributing the
estimated count rate (with or without accidental subtraction) from each leaf node
across its constituent elements in ~P, followed by normalization.

Data availability
The data supporting the results presented in this manuscript is available from the
corresponding author G.A.H. upon request.
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