News and Features

About Us | Our Publications | Contact Us

Methodie The next level in TDI-CCD sensors and cameras.		eras.				with 50 100 time sales.ha	Advanced TDI technology with 50 KHz line rates and 100 times more signal. sales.hamamatsu.com/TDI USA 800.524.0504 • Europe 00.800.800.800.880			
Explore Photonics.com Enter search term		rm Entire Site	!	search Register for a		for a FREE accou	a FREE account. Access To: Community Forum			
Photonics.com Home News &	Features Products	News Briefs Newsletter	Biophotonics Cal	lendar Phot	onics Spectra	Buyers' Guide	Community Forum	Submit Releases		

Detector Resists Radiation

ROCHESTER, N.Y., Aug. 15, 2007 -- An imaging detector promises to revolutionize future NASA planetary missions with technology that could withstand the harsh radiation environments in space.

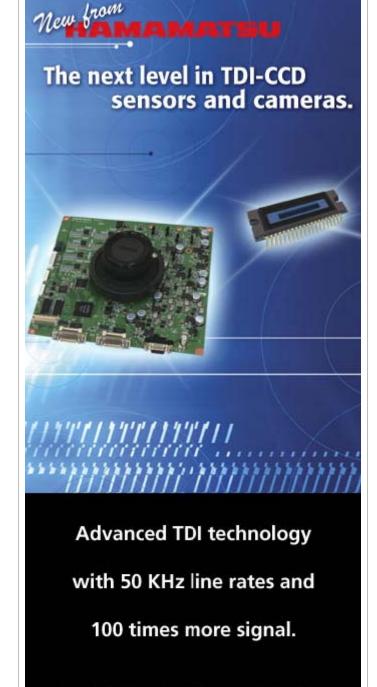
Email Article Printer Friendly Save Article

Scientists from Rochester Institute of Technology (RIT) and University of Rochester (UR) won \$592,000 from the NASA Planetary Instrument Definition and Development Program to design, build and test a detector that should be resilient against radiation damage. The lightweight device will be smaller and consume less power than technology currently in use. The novel readout circuitry design will give the device a radiation tolerance not possible in standard optical detectors.

"All these benefits will lead to lower mission costs and greater scientific productivity," said Donald Figer, director of the Rochester Imaging Detector Laboratory at RIT and lead scientist on the project, in an RIT press release. "But ultimately, radiation immunity is the focus."

Figer's team includes Zeljko Ignjatovic from UR, Zoran Ninkov from RIT, Melissa McGrath from NASA Marshall Space Flight Center and Shouleh Nikzad from NASA Jet Propulsion Laboratory.

"Our detector captures images directly in the digital domain at the pixel level rendering subsequent signal transmission less susceptible to cosmic radiation environment," said Ignjatovic, assistant professor of electrical and computer engineering.


The new detector is based on a technology created by Ignjatovic and his colleagues at UR in which each pixel reads and converts its signal from analog to digital immediately upon capture. Standard optical detectors lack this capability. Instead, signals must travel along a line of sensors to reach a readout circuit. This wastes energy and leaves the signal vulnerable to radiation damage that degrades the circuit over time.

"Radiation-tolerant detectors are a critical need for NASA in the continued exploration of the solar system," said McGrath, chief scientist in the Science and Mission Systems Office at NASA Marshall Space Flight Center.

Stefi Baum, director of the Chester F. Carlson Center for Imaging Science at RIT, said, "In space astronomy and planetary missions, detectors are frequently the critical pacing item. By developing detectors with greatly reduced noise properties and greatly enhanced tolerance to radiation damage -- the chief lifetime limiter of detectors in space -- the collaboration should dramatically improve the reach in sensitivity and lifetime of the missions to explore and understand the nature of the planets with which we share our solar system."

Testing the overall system will determine how the sensors hold up in cryogenic environments in which the detector is cooled to very low temperatures, imitating conditions in space. The device will be tested at RIT's Rochester Imaging Detector Laboratory, a new facility to develop detector technologies for next-generation ground-based and space telescopes.

The imaging detector under development will boast a dynamic range and greater short wavelength sensitivity. Figer said the detector could become a key technology for future planetary missions in the most severe radiation environments. The technology could figure heavily in missions under consideration for NASA's Discovery, Mars Exploration and New Frontiers programs.

sales.hamamatsu.com/TDI USA 800.524.0504 • Europe 00.800.800.800.88

photonics.com COMMUNITY FORUM

Ask questions. Get Answers. Join the photonics community. Most Active Topics GaN Bests Silicon A newbie question Linear Variable Interference Filters in the Mid-IR wavelengths Photonics Problem A kit to make a simple high quality magnifying lens. Photonics Spectra | April 2008 PHOTONICS Plant Leaves Reveal Clues About **Crop Health** Visualizing a Laser's Polarization Making a Microlens Array with **Micromirrors** Microscopic Flow of Non-Brownian Systems Probed A Better Way to Take the Measure of Seawater

It might someday be used to capture hyperspectral imaging from a platform orbiting the outer planets or their satellites. Cameras looking down on Europa could take a picture of every wavelength at every pixel.

"We could use that information to figure out if there are lakes of water on Europa or hydrocarbons on Titan," Figer said. "We can figure out the composition of a surface without having to land on it, which we might want to do 10 years later. Then we would know where to land."

For more information, visit: ridl.cis.rit.edu

Start a discussion on this article or any photonics topic in the Photonics.com Community Forum