Connecting and scaling semiconductor quantum photonic systems

Jelena Vuckovic

Stanford University

Photonics for Quantum 2, June 2020

Quantum technologies

Quantum repeaters and networks

What do we need?

1) Homogeneous, long lived qubits with (optical) interfaces

2) Efficient optical interconnects

Quantum simulators & computers

Gonzales-Tudela et al., *Nature Photonics* 9, 320-325 (2015). Douglas et al., *Nature Photonics* 9, 326-331 (2015).

Optically interfaced semiconductor spin qubits

Superconducting qubit in a microwave cavity

- Large, traditional microfab => easy to make them all the same
- Superconductors
- Microwave frequencies
- No direct optical interface

(Artificial) atom in an optical cavity

Color centers in diamond and silicon carbide

- Smaller by >1000x => nanofabrication + ion implantation/CVD (more challenging to make them all the same)
- Semiconductors
- Possibility of operation at higher temperatures (~2-10K)
- Excellent photon interface
- Number of 2-qubit gate operations per electron spin qubit coherence time > superconducting qubits

SiV color centers in diamond

Collaborators: @ Stanford: Melosh, Safavi-Naeini. @ Harvard: Loncar

New inversion symmetric diamond color centers

6 C Carbon 12.011		Ground state splitting	Debye–Waller factor	Quantum efficiency	excited state $ \pm 1/2\rangle$ $ \pm 1/2\rangle$
14 Si Silicon 28.085	SiV-	50 GHz ^[1]	78% [6]	30% ^[8] , 14% * ^{[4}	5]
32 Ge Gemanium 72.630	GeV-	152 GHz ^[2]	61% [7]	90% *[5]	$ \pm 1/2\rangle$ $ \pm 1/2\rangle$ ground state
50 Sn Tin 118.71	SnV-	850 GHz ^[3]	41% ^[3]	80% ^[3] , 91% * ^{[4}	5] * Based on <i>ab initio</i> calculations
82 Pb Lead 207.2	PbV-	2 THz ^[4] 4.4 THz ^{*[5]}	20% *[5]	unknown	
114 Flerovium (289)	 [1] Hepp et al., <i>Phys</i> [2] Bhaskar et al., Phys [3] Iwasaki et al., Phi [4] Trusheim et al., a [5] Thiering and Gal 	s. <i>Rev. Lett.</i> 112, 036405 (2014) hys. Rev. Lett. 118, 223603 (2017) hys. Rev. Lett. 119, 253601 (2017) arXiv:1805.12202 i, Phys. Rev. X 8, 021063 (2018)	[6] Neu et al., <i>New J. Phys</i> [7] Palyanov et al., <i>Sci. Re</i> [8] Becker and Becher, Phy 1700586 (2017)	z. 13, 025012 (2011) p. 5, 14789 (2015) ys. Status Solidi A 214,	SnV color centers: elevated temperatures (~2K) + much higher efficiency than SiV

SnV in Diamond via Shallow Ion Implantation and Subsequent Diamond Overgrowth

V_{Si} in 4H-SiC

- collaboration with J.
 Wrachtrup (Stuttgart) & S.
 Economou (VTech)
- e-spin coherence time ~20ms
- Indistinguishable photons generated
- 65 MHz transitions (lifetime limit 35 MHz)

- Very stable transitions
- DC Stark tuning to compensate full inhomogenous broadening

Nano Letters **17**, 3, 1782-1786 (2017) Physical Review Applied, **9**, 034022 (2018) Nature Photonics vol.**14**, pp. 330–334 (2020)

c-axis

Vei(h)

Jelena Vuckovic, Stanford

1.0 Norm. counts Time (h) 0.5 3 -1 0Detuning (GHz) -40 -20 ge (V) -10 0 Detuning (GHz) 40 Detuning (GHz) [arXiv:2003.12591]

Floquet eigenstates

D. Lukin, A. White, M. Guidry, R. Trivedi et al [arXiv:2003.12591]

Jelena Vuckovic, Stanford

VSi in SiC

Photon statistics

D. Lukin, A. White, M. Guidry, R. Trivedi et al [arXiv:2003.12591]

Pulsed optical coherent control of a modulated single emitter

Shaped single photon emission by pulsed modulation

Spectrally reconfigurable quantum emitters enabled by optimized fast modulation

D. Lukin, A. White, M. Guidry, R. Trivedi et al [arXiv:2003.12591]

Spectrally reconfigurable quantum emitters enabled by optimized fast modulation

D. Lukin, A. White, M. Guidry, R. Trivedi et al [arXiv:2003.12591]

Spectrally reconfigurable quantum emitters enabled by optimized fast modulation

D. Lukin, A. White, M. Guidry, R. Trivedi et al [arXiv:2003.12591]

Floquet engineering for removing emitter inhomogeneity

Spectral reconfiguring of VSi in SiC D. Lukin, A. White, M. Guidry, R. Trivedi et al [arXiv:2003.12591] Controllably pulsing a Hamiltonian with inhomogeneously broadened spins.

$$H = \sum_{i} \frac{\omega_i}{2} \sigma_z^i + \sum_{i} J \left[\alpha(t) \sigma_+^i \sigma_-^{i+1} + \text{h.c.} \right]$$

Time-independent Hamiltonian with identical spin resonances.

$$H_{0} = \sum_{i} \frac{\omega_{0}}{2} \sigma_{z}^{i} + \sum_{i} J \left[\sigma_{+}^{i} \sigma_{-}^{i+1} + \text{h.c.} \right]$$

R. Trivedi, S. Sun, in collaboration with I. Cirac, D. Malz (MPQ)

Inhomogeneous broadening compensation by dynamic modulation

Inhomogenously broadened emitters under optimized pulsed modulation exhibit signature of collective coupling to cavity mode.

Quantum technologies

Quantum repeaters and networks

What do we need?

1) Homogeneous, long lived qubits with optical interfaces

2) Efficient optical interconnects

Quantum simulators & computers

Gonzales-Tudela et al., *Nature Photonics* 9, 320-325 (2015). Douglas et al., *Nature Photonics* 9, 326-331 (2015).

Efficient quantum optical interconnects necessary for system-level integration

Zhang*, Sun* et al., *Nano Lett.* 18, 1360–1365 (2018)

Faraon et al., *Optics Express* 16, 12154 (2008)

Photonics can be efficient, robust, and insensitive to errors

Logan Su et al, *Appl. Phys. Rev.* 7, 011407 (2020) **S**tanford **P**hotonics **IN**verse design **S**oftware (**SPINS**) Vuckovic Group - Stanford OTL Docket Number: S18-012 **SPINS–B** (open source, 3D) on Github http://github.com/stanfordnqp/spins-b

Foundry fabricated inverse designed photonics

Foundry fabricated inverse designed photonics

L. Su et al, *ACS Photonics*, 5 (2), pp 301–305 (2018)

Collaboration with John Bowers, UCSB Piggott, E. Ma, L. Su et al, ACS Photonics https://doi.org/10.1021/acsphotonics.9b01540 (2020)

Optimized diamond quantum photonics

Fabrication method developed by Constantin Dory, Daniil Lukin (inspired by work from Paul Barclay, Calgary; Dirk Englund, MIT)

Jelena Vuckovic, Stanford

C. Dory, et al., *Nature Comm.* 10, 3309 (2019)

Optimized coupler-cavity integration

SnV coupling to diamond photonics

Silicon Carbide - ideal photonics material

- Strong optical nonlinearity
- Piezoelectric
- Excellent thermal conductivity
- Large bandgap

Silicon compatible

Si

SiO₂

Si

- Available on wafer scale
- Host high quality quantum emitters color centers
 => quantum technologies

1960's: Silicon (Si) wafers commercialized.
2000's: Silicon-on-Insulator (SOI) commercialized.
→ Silicon photonics enters golden age.

1990's: Lithium Niobate (LiNbO₃) wafers commercialized. 2010's: LiNbO₃-on-Insulator is commercialized.

 \rightarrow LiNbO₃ photonics

1990's: SiC wafers commercialized...2019: SiC-on-insulator?

Jelena Vuckovic, Stanford

C. Wang, Opt. Express 26, 2018

100 mm and 150 mm 4H-SiC wafers (CREE)

SiCOI (SiC on Insulator)

Q>1,100,000

μm

1

0.5 mm

SiCOI photonics

D. Lukin, C. Dory, M. Guidry et al, *Nature Photonics* vol.**14**, pp. 330–334 (2020)

M. Guidry, K. Yang, D. Lukin et al [arXiv:2004.13958]

SiCOI nonlinear photonics

Nonlinear photonics: optical parametric oscillation (OPO)

M. Guidry, K. Yang, D. Lukin et al [arXiv:2004.13958]

Quantum photonics: interaction with color centers

~100-fold enhancement on cavity resonance

C 3

Jelena Vuckovic, Stanford

Purcell enhancement

Outlook – SiCOI chip-scale quantum networks

Outlook: solid-state quantum simulators

$$H_{I} \approx \frac{\hbar \bar{g}_{c}^{2}}{\bar{\Delta}_{c}} \sum_{j,l}^{N} \sigma_{eg}^{j} \sigma_{ge}^{l} f(z_{j}, z_{l})$$

We can specify an interaction Hamiltonian by inverse engineering the photonic environment!

González-Tudela et al., *Nature Photonics* 9, 320–325 (2015). Douglas et al., *Nature Photonics* 9, 326–331 (2015).

R. Trivedi, S. Sun, in collaboration with I. Cirac, D. Lanz (MPQ)

Inverse design for dispersion engineering

Microresonator dispersion

• 4H silicon Carbide Quantum and nonlinear Photonics

D. Lukin, C. Dory, M. Guidry et al, Nature Photonics 14, 330–334 (2020)

D. Lukin, A. White, M. Guidry, R. Trivedi et al [arXiv:2003.12591]

M. Guidry, K. Yang, D. Lukin et al [arXiv:2004.13958]

SiV and SnV in inverse designed diamond cavities

Jelena Vuckovic, Stanford

Shuo Sun et al, *Phys. Rev. Letters* 121, 083601 (20 C. Dory, et al., *Nature Comm.* 10, 3309 (2019) A. Rugar, et al., *Phys. Rev. B* 99, 205417 (2019), *Nano Letters* **20**, 1614-1619 (2020) [arXiv:2005.10385]

 Photonics optimization critical for implementation of scalable and practical classical and quantum photonic systems

Stanford Photonics INverse design Software (SPINS), OTL S18-012 SPINS–B (open source) on Github http://github.com/stanfordnqp/spins-b *Fully compatible with foundry fabrication*

Acknowledgement

Nanoscale and Quantum Photonics Laboratory

