Continuous-variable quantum computing: scalable designs and fault tolerance

Nicolas C Menicucci

AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE

QuRMIT

RIT Jul 2020 (Comic sans forever!)

My group

https://www.qurmit.org/

QuRMIT

ARC Centre of Excellence

https://www.cqc2t.org/

CENTRE FOR QUANTUM COMPUTATION & COMMUNICATION TECHNOLOGY

AUSTRALIAN RESEARCH COUNCIL CENTRE OF EXCELLENCE

abstract:

abstract:

abstract:

physical:

Cluster states

Teleportation

Teleportation

Teleportation

VOLUME 86, NUMBER 22

PHYSICAL REVIEW LETTERS

28 May 2001

A One-Way Quantum Computer

Robert Raussendorf and Hans J. Briegel Theoretische Physik, Ludwig-Maximilians-Universität München, Germany (Received 25 October 2000)

VOLUME 86, NUMBER 22

PHYSICAL REVIEW LETTERS

28 May 2001

A One-Way Quantum Computer

Robert Raussendorf and Hans J. Briegel Theoretische Physik, Ludwig-Maximilians-Universität München, Germany (Received 25 October 2000)

We present a scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. The measurements are used to imprint a quantum logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus one-way quantum computers and the measurements form the program.

VOLUME 86, NUMBER 22

PHYSICAL REVIEW LETTERS

28 May 2001

A One-Way Quantum Computer

Robert Raussendorf and Hans J. Briegel Theoretische Physik, Ludwig-Maximilians-Universität München, Germany (Received 25 October 2000)

We present a scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. The measurements are used to imprint a quantum logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus one-way quantum computers and the measurements form the program.

VOLUME 86, NUMBER 22

PHYSICAL REVIEW LETTERS

28 May 2001

A One-Way Quantum Computer

Robert Raussendorf and Hans J. Briegel

Theoretische Physik, Ludwig-Maximilians-Universität München, Germany (Received 25 October 2000)

We present a scheme of quantum computation that consists entirely of one-qubit measurements on a particular class of entangled states, the cluster states. The measurements are used to imprint a quantum logic circuit on the state, thereby destroying its entanglement at the same time. Cluster states are thus one-way quantum computers and the measurements form the program.

Why bother with CVs?

CVs: Advantages

- deterministic entanglement
- huge scaling potential

CVs: Advantages

- deterministic entanglement
- huge scaling potential
- Fundamental
 - avoid premature optimisation (i.e., why should we restrict to photonic qubits?)

CVs: Advantages

- deterministic entanglement
- huge scaling potential
- Fundamental
 - avoid premature optimisation (i.e., why should we restrict to photonic qubits?)
- Both together
 - more options for practical tasks (e.g., quantum cryptography, cluster states)
 - "hybrid" schemes: CV technology helps to manipulate photonic quantum states

- intrinsic noise due to finite squeezing (more later)
- eventually need to discretise for error correction (more later)

- intrinsic noise due to finite squeezing (more later)
- eventually need to discretise for error correction (more later)
- Fundamental
 - more questions to answer (e.g., what discretisation?)
 - must incorporate effects of noise from day one (complicated, easy to end up writing a crap paper)

- intrinsic noise due to finite squeezing (more later)
- eventually need to discretise for error correction (more later)
- Fundamental
 - more questions to answer (e.g., what discretisation?)
 - must incorporate effects of noise from day one (complicated, easy to end up writing a crap paper)
- Both together
 - must do extra work to employ existing algorithms
 - smaller literature, fewer optimised experimental platforms

CV cluster states

CV cluster states

PHYSICAL REVIEW A 73, 032318 (2006)

Continuous-variable Gaussian analog of cluster states

Jing Zhang^{1,*} and Samuel L. Braunstein²

¹State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, People's Republic of China ²Computer Science, University of York, York YO10 5DD, United Kingdom (Received 21 October 2005; published 16 March 2006)

CV cluster states

PHYSICAL REVIEW A 73, 032318 (2006)

Continuous-variable Gaussian analog of cluster states

Jing Zhang^{1,*} and Samuel L. Braunstein²

¹State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, People's Republic of China ²Computer Science, University of York, York YO10 5DD, United Kingdom

(Received 21 October 2005; published 16 March 2006)

PRL 97, 110501 (2006)

PHYSICAL REVIEW LETTERS

week ending 15 SEPTEMBER 2006

Universal Quantum Computation with Continuous-Variable Cluster States

Nicolas C. Menicucci,^{1,2,*} Peter van Loock,³ Mile Gu,¹ Christian Weedbrook,¹ Timothy C. Ralph,¹ and Michael A. Nielsen¹

¹Department of Physics, The University of Queensland, Brisbane, Queensland 4072, Australia ²Department of Physics, Princeton University, Princeton, New Jersey 08544, USA ³National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

(Received 30 May 2006; published 13 September 2006)

Optical implementation

Continuous quantum variables

- Computational basis: eigenstates of $q = (a + a^{\dagger})/\sqrt{2}$
- Conjugate basis: eigenstates of $p = -i(a a^{\dagger})/\sqrt{2}$
- Advantages of CV (over qubit) cluster states
 - Deterministic generation
 - Scalable to huge sizes
- Problem: ideal CV cluster states are infinitely squeezed (infinite energy)
 - Finite squeezing \rightarrow additive Gaussian noise
 - Fault tolerance possible with encoded qubits (GKP)

Computation with ideal states

- Single-mode projective measurements are sufficient for universal QC
- Homodyne detection (quadrature measurements) enables all Gaussian unitaries
 - Relatively easy to do experimentally
 - Very low noise
- Photon counting enables the rest
 - Less efficient, but technology rapidly improving
- Still have to handle intrinsic noise...

Encoded qubits

PHYSICAL REVIEW A, VOLUME 64, 012310

Encoding a qubit in an oscillator

Daniel Gottesman,^{1,2,*} Alexei Kitaev,^{1,†} and John Preskill^{3,‡} ¹Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052 ²Computer Science Division, EECS, University of California, Berkeley, California 94720 ³Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (Received 9 August 2000; published 11 June 2001)

Encoded qubits

PHYSICAL REVIEW A, VOLUME 64, 012310

Encoding a qubit in an oscillator

Daniel Gottesman,^{1,2,*} Alexei Kitaev,^{1,†} and John Preskill^{3,‡} ¹Microsoft Corporation, One Microsoft Way, Redmond, Washington 98052 ²Computer Science Division, EECS, University of California, Berkeley, California 94720 ³Institute for Quantum Information, California Institute of Technology, Pasadena, California 91125 (Received 9 August 2000; published 11 June 2001)

Noise process

25

- Homodyne detection implements (faulty) qubit gates
- Use qubit-level quantum error correction to reduce errors (well established)
- Fault tolerance
 - (initial error < threshold) \rightarrow
 - (arbitrarily low error in final computation)

High squeezing \Rightarrow low Gaussian noise \Rightarrow low rate of Pauli errors

- CV cluster state with sufficient squeezing: "railroad tracks"
- GKP qubits with sufficient squeezing: "train cars" carrying the discrete quantum information
- Homodyne detection = Gaussian unitaries: "switches" to guide the info & measurement
- Non-Clifford resource: photon counting, cubicphase gate, cubic phase state

- CV cluster state with sufficient squeezing: "railroad tracks"
- GKP qubits with sufficient squeezing: "train cars" carrying the discrete quantum information
- Homodyne detection = Gaussian unitaries: "switches" to guide the info & measurement
- Non-Clifford resource: photon counting, cubicphase gate, cubic phase state

CV cluster state with sufficient squeezing: "railroad tracks"

GKP qubits with sufficient squeezing: "train cars" carrying the discrete quantum information

UNIVERSITY

- CV cluster state with sufficient squeezing: "railroad tracks"
- GKP qubits with sufficient squeezing: "train cars" carrying the discrete quantum information
- Homodyne detection = Gaussian unitaries: "switches" to guide the info & measurement
- Vacuum state! (or heterodyne detection)

Encoding a qubit in a trapped-ion mechanical oscillator

C. Flühmann¹*, T. L. Nguyen¹, M. Marinelli¹, V. Negnevitsky¹, K. Mehta¹ & J. P. Home¹*

Nature **566**, 513–517(2019)

Encoding a qubit in a trapped-ion mechanical oscillator

C. Flühmann¹*, T. L. Nguyen¹, M. Marinelli¹, V. Negnevitsky¹, K. Mehta¹ & J. P. Home¹*

Nature **566**, 513–517(2019)

A stabilized logical quantum bit encoded in grid states of a superconducting cavity

P. Campagne-Ibarcq,^{1†*} A. Eickbusch,^{1†} S. Touzard,^{1†}
E. Zalys-Geller,¹ N.E. Frattini,¹ V.V. Sivak,¹ P. Reinhold,¹ S. Puri,¹
S. Shankar,^{1,3} R.J. Schoelkopf,¹ L. Frunzio,¹ M. Mirrahimi,² M.H. Devoret^{1*}

arXiv:1907.12487

A stabilized logical quantum bit encoded in grid states of a superconducting cavity

P. Campagne-Ibarcq,^{1†*} A. Eickbusch,^{1†} S. Touzard,^{1†} E. Zalys-Geller,¹ N.E. Frattini,¹ V.V. Sivak,¹ P. Reinhold,¹ S. Puri,¹ S. Shankar,^{1,3} R.J. Schoelkopf,¹ L. Frunzio,¹ M. Mirrahimi,² M.H. Devoret^{1*}

arXiv:1907.12487

Making CV cluster states

Linear optics

Inline squeezing (C_z gate) can be replaced with offline squeezing + interferometer*

Linear optics

Inline squeezing (C_z gate) can be replaced with offline squeezing + interferometer*

* P. van Loock, C. Weedbrook, M. Gu, PRA 76, 032321 (2007)

How can we make scalable resource states?

Macronode-based cluster states

Frequency-mode cluster states

Frequency-mode cluster states

PRL 112, 120505 (2014)

PHYSICAL REVIEW LETTERS

week ending 28 MARCH 2014

Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb

Moran Chen,¹ Nicolas C. Menicucci,^{2,*} and Olivier Pfister^{1,†} ¹Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA ²School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (Received 11 November 2013; revised manuscript received 31 January 2014; published 26 March 2014)

Frequency-mode cluster states

PRL 112, 120505 (2014)

PHYSICAL REVIEW LETTERS

week ending 28 MARCH 2014

Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb

Moran Chen,¹ Nicolas C. Menicucci,^{2,*} and Olivier Pfister^{1,†} ¹Department of Physics, University of Virginia, Charlottesville, Virginia 22903, USA ²School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia (Received 11 November 2013; revised manuscript received 31 January 2014; published 26 March 2014)

60-mode linear cluster state

	ОРО		frequency-
numn		eluctor state	measurements
pump			measurements

10,000-mode linear cluster state

Animation by Seiji Armstrong (available online at https://youtu.be/gor29QIP9Ls)

Animation by Seiji Armstrong (available online at https://youtu.be/gor29QIP9Ls)

APL PHOTONICS 1, 060801 (2016)

Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

Jun-ichi Yoshikawa,¹ Shota Yokoyama,^{1,2} Toshiyuki Kaji,¹ Chanond Sornphiphatphong,¹ Yu Shiozawa,¹ Kenzo Makino,¹ and Akira Furusawa^{1,a}

APL PHOTONICS 1, 060801 (2016)

Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing

Jun-ichi Yoshikawa,¹ Shota Yokoyama,^{1,2} Toshiyuki Kaji,¹ Chanond Sornphiphatphong,¹ Yu Shiozawa,¹ Kenzo Makino,¹ and Akira Furusawa^{1,a}

1-million-mode linear cluster state!

QUANTUM COMPUTING

Generation of time-domain-multiplexed two-dimensional cluster state

Warit Asavanant¹, Yu Shiozawa¹, Shota Yokoyama², Baramee Charoensombutamon¹, Hiroki Emura¹, Rafael N. Alexander³, Shuntaro Takeda^{1,4}, Jun-ichi Yoshikawa¹, Nicolas C. Menicucci⁵, Hidehiro Yonezawa², Akira Furusawa¹*

Asavanant *et al.*, *Science* **366**, 373–376 (2019)

QUANTUM COMPUTING

Deterministic generation of a two-dimensional cluster state

Mikkel V. Larsen*, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen, Ulrik L. Andersen*

Larsen et al., Science **366**, 369–372 (2019)

Larsen *et al.*, *Science* **366**, 369–372 (2019)

Other proposed approaches

Frequency-temporal modes

- like musical tones: one frequency for some period of time
- frequency adds an extra lattice dimension
- Frequency-spatial modes
 - frequency-encoded linear states in different beams woven together
- Three-dimensional lattice topologies

Conclusion

Conclusion

CV cluster states

- Enable measurement-based quantum computation using continuous variables
- Fault tolerance is possible
- GKP qubits
 - Enable fault tolerance with CV cluster states
 - All-Gaussian gate set (only known bosonic code with this feature!)
 - Achieved in trapped ions and circuit QED
- Macronode-based methods are scalable
 - 1D CV cluster state (wire): frequency and temporal modes achieved
 - 2D CV cluster state (universal): temporal modes achieved
 - 3D and higher-dimensional lattices possible
 - Millions of modes achieved
 - Need to improve squeezing (~4.5 dB, need >10 dB)

