

Design Guidelines for Implementing DDR and DDR2 SDRAM Interfaces in Cyclone III Devices

May 2008, ver 2.1

Application Note 445

Introduction

Cyclone[®] III devices support interfacing to both DDR2 and DDR SDRAM devices and modules. Altera provides the easy-to-use ALTMEMPHY megafunction to implement robust auto-calibrating interfaces to DDR2 and DDR SDRAM devices. You can configure this megafunction to support either a full-rate or half-rate controller. Tables 1 and 2 display the maximum clock frequencies for DDR2 and DDR SDRAM interfaces supported by Cyclone III devices for half-rate and full-rate controllers.

For detailed information about instantiating the ALTMEMPHY megafunction with half-rate or full-rate controller, refer to the *ALTMEMPHY Megafunction User Guide*.

Table 1. Cyclone III Maximum Clock Rate Support for External Memory Interfaces with Half-Rate Controller Notes (1), (2), (3), (4)

		Commercial Industrial Au					tomot	ive								
		-6 Sp	6 Speed Grade –7 Speed Grade –8 Speed (MHz) (MHz) (MHz)		eed G (MHz)	rade	–7 Speed Grade (MHz)		rade	–7 Speed Grade (MHz)		Grade)				
Memory Standard	I/O Standard	Column I/O Banks	Row I/O Banks	Hybrid Mode	Column I/O Banks	Row I/O Banks	Hybrid Mode	Column I/O Banks	Row I/O Banks	Hybrid Mode	Column I/O Banks	Row I/O Banks	Hybrid Mode	Column I/O Banks	Row I/O Banks	Hybrid Mode
DDR2 SDRAM	SSTL-18 Class I/II	200	167	150	167	150	133	167	133	125	167	150	133	167	133	125
DDR SDRAM	SSTL-2 Class I/II	167	150	133	150	133	125	133	125	100	150	133	125	133	125	100

Notes to Table 1:

- (1) Column I/Os refer to Top and Bottom I/Os. Row I/Os refer to Right and Left I/Os. Hybrid mode refer to combination of Column and Row I/Os.
- (2) The values apply for interfaces with both modules and components.
- (3) The supported operating frequencies listed here are memory interface maximums for the FPGA device family. Your design's actual achievable performance is based on design- and system-specific factors, as well as static timing analysis of the completed design.
- (4) Refer to Table 3 for the required DDR2 memory device speed grade for external memory interface to achieve performance as stated in Table 1.

Table 2. C Controller	Votes (1)	Maximum , (2), (3),	(4)	ate Supp	ort for Ex	ternal M	emory In	terfaces i	with Full-	Rate	
				Comm	nercial			Indu	strial	Auton	notive
		–6 Speed Grade (MHz)		–7 Spee (M	Speed Grade –8 Speed Grade –7 Spee (MHz) (MHz) (N		–7 Speed Grade (MHz)		–7 Spee (M	d Grade Hz)	
Memory Standard	l/O Standard	Column I/O Banks	Row I/O Banks	Column I/O Banks	Row I/O Banks	Column I/O Banks	Row I/O Banks	Column I/O Banks	Row I/O Banks	Column I/O Banks	Row I/O Banks
DDR2 SDRAM	SSTL-18 Class I/II	167	167	150	150	133	133	150	150	133	133
DDR SDRAM	SSTL-2 Class I/II	167	150	150	133	133	125	150	133	133	125

Notes to Table 2:

(1) Column I/Os refer to Top and Bottom I/Os. Row I/Os refer to Right and Left I/Os. Hybrid mode refer to combination of Column and Row I/Os.

The values apply for interfaces with both modules and components. (2)

(3) The supported operating frequencies listed here are memory interface maximums for the FPGA device family. Your design's actual achievable performance is based on design- and system-specific factors, as well as static timing analysis of the completed design.

(4) Refer to Table 3 for the required DDR2 memory device speed grade for external memory interface to achieve performance as stated in Table 2.

> Table 3 displays the required DDR2 memory device speed grade for external memory interface.

Table 3. Required DL	Table 3. Required DDR2 Memory Device Speed Grade for External Memory Interface Note (1)								
Temperature & Speed Grade	Interface location	I/O Standard SSTL-18	Memory Speed Grade (MHz)	Interface f _{max} (MHz)					
	Ton/Bottom	Class I	267	200					
Ce	TOP/DOttom	Class II	333	200					
6	Left/Right	Class I/II	200	167					
	Hybrid	Class I/II	200	150					
	Top/Bottom	Class I/II	200	167					
C7	Left/Right	Class I/II	200	150					
	Hybrid	Class I/II	200	133					

Table 3. Required DL	DR2 Memory Do	evice Speed Grade	for External Memory Inter	face Note (1)
Temperature & Speed Grade	Interface location	I/O Standard SSTL-18	Memory Speed Grade (MHz)	Interface f _{max} (MHz)
	Top/Bottom (2)	Class I/II	267	167
68	Left/Right	Class I/II	200	133
	Hybrid	Class I/II	200	125
	Top/Bottom	Class I/II	267	167
17	Left/Right	Class I/II	200	150
	Hybrid	Class I/II	200	133
	Ton/Bottom	Class I	267	167
Δ7	TOP/ Bottom	Class II	333	107
	Left/Right	Class I/II	200	133
	Hybrid	Class I/II	200	125

Notes to Table 3:

 For DDR2 SDRAM write timing performance on Columns I/O for C8 and A7 devices, 97.5 degree phase offset is required.

(2) For Q240 C8 device 167 MHz performance on Top/Bottom interface, 333 MHz DDR2 memory device is required.

This application note describes Altera's recommended design flow to implement DDR2 SDRAM memory interface using Cyclone III devices. This application note also describes how to use the FPGA design flow to generate an example design featuring a DDR2 SDRAM memory interface that uses the data path provided with the Altera[®] ALTMEMPHY megafunction. You can also use the same design flow for DDR SDRAM interfaces.

FPGA Design Flow

Altera recommends the design guidelines described in this section as best practices for successful memory interface implementation in Cyclone III devices. These guidelines are designed to provide a good out-of-the-box experience with external memory interface in Cyclone III devices. Figure 1 illustrates the design flow required for Cyclone III memory interfaces. Each step is discussed in detail in the following sections.

Note to Figure 1:

(1) Although these steps are optional, Altera recommends following these steps.

Step 1: Select Device

Prior to the start of designing any memory interface, determine the required bandwidth of the memory interface. Bandwidth can be expressed as:

Bandwidth = data width (bits) \times data transfer rate (1/sec) \times efficiency

The efficiency is the percentage of time the data bus is transferring data. It is dependent on the type of memory. For example, in memory interfaces where there are separate write and read ports, the efficiency would be 100% when there is an equal amount of reads and writes on these memory interfaces.

After calculating the bandwidth of the memory interface, determine which memory and FPGA to use.

For information about selecting the different memory types, refer to the *Selecting the Right High-Speed Memory Technology for Your System* white paper.

In addition, Altera's FPGA devices support various data widths for different memory interfaces. The memory interface support between density and package combinations is different so you need to determine which FPGA device density and package combination is best suited for your application.

For information about selecting the different memory types, differences between the memory types, and information about the FPGA density and package support for the different memory types, refer to the *External Memory Interfaces in Cyclone III Devices* chapter in volume 1 of the *Cyclone III Device Handbook*.

Step 2: Instantiate PHY and Controller in a Quartus II Project

Begin your memory interface design by instantiating the (physical layer) PHY and controller modules. Figure 2 shows a system-level diagram including the top-level example design that the DDR2 SDRAM High Performance Controller MegaCore[®] function creates for you.

The example design is a fully functional design that can be simulated, synthesized and used in hardware. It contains the PHY, controller, and an example driver. The example driver is a self-test module that issues read and write commands to the controller and checks the read data to produce the pass/fail and test-complete signals.

Figure 2. System-Level Diagram of DDR2 SDRAM Interface

There are two ways you can instantiate the components needed for the external memory interface:

- Use Altera's DDR2 or DDR SDRAM High-Performance Controller MegaCore function, which builds the controller, instantiates the ALTMEMPHY megafunction to build the data path or PHY, and instantiates the phase-locked loop (PLL).
- Use Altera's ALTMEMPHY megafunction alone to build the PHY and instantiate the PLL. You can create your own controller to work with the ALTMEMPHY megafunction.

Altera provides an easy and fast way for you to create your memory interface design through the DDR2 or DDR SDRAM High-Performance Controller MegaWizard[®] Plug-In Manager, which instantiates the ALTMEMPHY megafunction for the data path and the phase-locked loop (PLL). The MegaWizard also generates an example driver for you to test your design. You can also use the example driver as a reference and create your own driver based on the example driver.

When instantiating the PHY as a standalone logic for your memory interface, Altera recommends using the ALTMEMPHY megafunction. This megafunction features a license-free physical interface that you can use with the standard Altera controller or your own custom controller. The ALTMEMPHY megafunction has the auto-calibration feature that automates timing closure for memory interfaces and adjusts timing-over-process, voltage, and temperature (PVT) variations.

There are two ways you can instantiate the ALTMEMPHY megafunction, either through the ALTMEMPHY MegaWizard Plug-In Manager, or using Altera's DDR2 or DDR SDRAM High-Performance Controller MegaWizard Plug-In Manager, which already includes the ALTMEMPHY megafunction. Even if you plan to use your own controller, Altera recommends that you first create a design using Altera's high-performance controller and then replace the Altera controller with your own controller. This way, you get an example design that you can simulate and verify.

For detailed information about instantiating the ALTMEMPHY megafunction or the memory controller, refer to the *ALTMEMPHY Megafunction User Guide* or the *DDR and DDR2 SDRAM High-Performance Controller User Guide*.

Step 3: Perform RTL/Functional Simulation (Optional)

When you instantiate the ALTMEMPHY megafunction using Altera's DDR2 or DDR SDRAM High-Performance Controller MegaCore, there is an option to generate a simulation model or testbench of the design in either Verilog HDL or VHDL. Even though this step is optional, Altera recommends performing this step.

This IP functional simulation model is a cycle-accurate HDL model file produced by the Quartus[®] II software. When you instantiate the memory interface using the DDR2 or DDR SDRAM High-Performance Controller, it generates an example design and a testbench, in addition to the ALTMEMPHY megafunction simulation model. The models work with Altera-supported VHDL and Verilog HDL simulators, such as ModelSim.

You can set the Quartus II software to do a simulation of the design using the generated testbench with third-party simulators. This is done through the NativeLink feature of the Quartus II software.

Use these simulation model output files for simulation purposes only and not for synthesis or any other purposes. Using these models for synthesis creates a non-functional design.

For detailed information about generating the simulation model in the Quartus II software and simulating the design, refer to the *DDR and DDR2 SDRAM High-Performance Controller User Guide*.

Step 4: Add Constraints

The next step in the design process is to add all timing, location, and physical constraints related to the external memory interface. This includes timing, pin locations, I/O standards, and pin loading assignments. The ALTMEMPHY megafunction only supports timing analysis using TimeQuest Timing Analyzer with Synopsys Design Constraints (SDC) assignments. These constraints are derived from the parameters you entered for the ALTMEMPHY megafunction or the High-Performance Controller, based on the DDR2 and DDR SDRAM data sheet and tolerances from the board layout. The ALTMEMPHY megafunction uses TimeQuest timing constraints along with the timing driven fitter to achieve good timing closure.

After instantiating the ALTMEMPHY megafunction, the ALTMEMPHY MegaWizard generates the following files that you need in order to properly constrain the design:

- <variation_name>_phy_ddr_timing.sdc to constrain timing.
- <variation_name>_pin_assignments.tcl to make I/O standard assignments.
- These script files are based on the design name used when instantiating the ALTMEMPHY megafunction. If you plan to use your own top-level design, you must edit the scripts to match your custom top-level design.

Table 4 displays the memory interface pin connections between DDR2 and Cyclone III devices.

Table 4. Memory Interfac Devices	ce Pin Connections Betwe	en DDR2 and Cyclone III
Interface Pin Description	Pin on Memory Device	Pin on FPGA
Write strobes	DQS	DQS
Read and write data	DQ	DQ
Data mask	DM	DQ
Memory clocks	СК, СК#	Any Adjacent User I/O (1),(2)
Address	А	Any User I/O (2)
Control signals	CS#, RS#, CAS#, WE#	Any User I/O (2)

Notes to Table 4:

- Altera recommends that you use differential I/O pair for CK/CK# implementation.
- (2) Altera recommends that you place these pins in the same I/O bank as the DQ/DQS pins.
- ----

For detailed information about creating, generating, and setting the constraints for the design, refer to the *ALTMEMPHY Megafunction User Guide*.

Step 5: Compile Design and Verify Timing Closure

After you have made the proper constraints to the design, compile the design in the Quartus II software. Upon completion of the compilation, you can generate the timing report by executing the **Report DDR** function from the **Tasks** pane of the TimeQuest Timing Analyzer window. Executing this **Report DDR** task automatically runs the <*variation_name>_phy_report_timing.tcl* timing margin report script that is generated during the instantiation of the ALTMEMPHY megafunction.

By executing the task, you can get the timing report for different paths, such as write data, read data, command/address, DQS vs CK, mimic, and core (entire interface) timing paths in the design.

For detailed information about the timing analysis and reporting using the ALTMEMPHY megafunction, refer to AN 438: Constraining and Analyzing Timing for External Memory Interfaces in Stratix III and Cyclone III Devices.

Step 6: Adjust Constraints

In the timing report of the design, you can see the worst-case setup and hold margin for the different paths of the design. If the setup and hold margin are unbalanced and you wish to achieve a balanced setup and hold margin, you can adjust the phase setting of the clocks that are used to clock these paths. For example, in the case of the write data margin, the write data is clocked by a write clock, which is -90° with respect to the system clock. The system clock is used to clock the write data strobe. If the report timing script indicates that using a -90° phase setting for the write clock to earlier than -90° with respect to the system clock so that there will be less hold margin. Similarly, adjust the write clock to later than -90° with respect to system clock if there is more setup margin.

For detailed information about the clocks used in the ALTMEMPHY megafunction, refer to the *ALTMEMPHY Megafunction User Guide*.

Step 7: Perform Gate-Level Timing Simulation (Optional)

This optional step allows you to use timing simulation to ensure that your system meets the proper timing requirements needed by each module of the design. Even though this step is optional, Altera recommends performing this step.

Step 8: Determine Board Design Constraints

Once you have closed the timing for the design, examine the board design to determine how different factors can have an effect on the signal integrity, thus affecting the overall timing margin seen at both the memory and the FPGA. For example, the termination scheme used, the drive strength setting on the FPGA, and the loading seen by the driver can directly affect the signal integrity. You need to understand the trade-offs between the different types of termination schemes and the effects of output drive strengths and loading so that you can swiftly navigate through the multiple combinations and choose the best possible settings for your designs.

For detailed information about understanding the different effects on signal integrity design, refer to *AN 408: DDR2 Memory Interface Termination, Drive Strength and Loading Design Guidelines.*

Step 9: Perform Board-Level Simulations

After determining the system requirements for the board design and finalizing the right board constraints, run board-level simulation to see if the settings are optimum. With many variables that can affect the signal integrity of the memory interface, simulating the memory interface provides you with an initial indication of how well the memory interface will perform.

Perform simulations on the data, data strobe, command, and address signals. If the memory interface does not have good signal integrity, you can adjust settings such as drive strength setting, termination scheme, or termination values, to improve the signal integrity (note that changing some of these settings will affect your timing and you may have to go back to the timing closure process if these change). There are various electronic design automation (EDA) simulation tools available to perform board-level simulations.

The input/output buffer information specific (IBIS) models for both the FPGA devices and the DDR2 and DDR SDRAM memory do not support read and write operations together, so you must perform the write and read operations separately for the simulation.

For detailed information about understanding the different effects on signal integrity design, refer to *AN* 408: *DDR2 Memory Interface Termination*, *Drive Strength and Loading Design Guidelines*.

Step 10: Verify FPGA Functionality

You can obtain useful information about the memory interface performance with board-level verification using the FPGA prototype. While the focus here is to ensure FPGA functionality in your end system, you can take additional steps to examine margins using oscilloscopes to verify the predicted size of the data-valid window, and the setup and hold margins at the I/O interface.

You can also use Altera's SignalTap[®] II Embedded Logic Analyzer to perform system-level verification to correlate the system against your design targets.

For detailed information about using SignalTap II, refer to the *Design Debugging Using the SignalTap II Embedded Logic Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

Example Walkthrough for 167-MHz DDR2 SDRAM Interface

This section provides a walkthrough on how to use the FPGA-External Memory design flow described in the preceding sections to design a 32-bit wide 167-MHz DDR2 SDRAM memory interface targeted for the Cyclone III FPGA development kit. The example design also provides some recommended settings, including the termination scheme and drive strength in order to make your design flow easier. Although the example design is specifically for the DDR2 SDRAM memory interface, the design flow for a DDR SDRAM memory interface is the same.

This example design targets for 167 MHz because the development kit uses an EP3C120F780 device. This device is available in –7 and –8 speed grades only. You can achieve higher clock rate up to 200 MHz for DDR2 SDRAM if you select –6 speed grade devices from the Cyclone III family.

Step 1: Select the Device

Cyclone III devices support various data widths for DDR2 and DDR SDRAM memory interfaces. This walkthrough uses the Cyclone III EP3C120F780C7 device with 32-bit wide DDR2 SDRAM interface up to 167 MHz on the bottom I/O banks. The 32-bit wide interface uses four ×8 groups. For the DDR2 SDRAM memory device, choose Micron's 512-MB MT47H32M16CC-3 333-MHz DDR2 SDRAM device that is used on the development kit.

Top/bottom DQ groups provide the fastest performance. The Quartus II software automatically uses the top/bottom DQ groups if they are available. Combining top/bottom DQ groups with left/right DQ groups for a single interface is not recommended and may result in a worse performance.

For more information about the DQ/DQS bus groups for different Cyclone III densities, packages, and sides of the device, refer to the *External Memory Interfaces in Cyclone III Devices* chapter in volume 1 of the *Cyclone III Device Handbook*.

Step 2: Instantiate PHY and Controller in a Quartus II Project

Create a project in the Quartus II software targeting the EP3C120F780C7 device, as shown in Figure 3.

Figure 3. Creating Quartus II Project Targeting the EP3C120F780C7 Device

institut III.				– Show in 'Availat	le device	∍'liet —
amily: Lyclone			-			5 list
Taract device			_	Package:	Any	-
	E .0			Pin count:	Any	-
 Auto device selected by th 	e Fitter				Ann	_
Specific device selected in	'Available d	evices' list		Speed grade:	JAny	-
				🔽 Show advar	nced dev	ices
				HardCopy c		only
vailable devices:						
Name	Core v	LEs	Use	er I/ Memor	Embed	PLL
EP3C80U484C6 (Advanced)	1.2V	81264	296	3 2810880	488	4
EP3C80U484C7 (Advanced)	1.2V	81264	296	2810880	488	4
EP3C80U484C8 (Advanced)	1.2V	81264	296	2810880	488	4
EP3L80048417 [Advanced]	1.29	81264 110000	295	2810880	488 570	4
EP3C120F484C7	1.27	119088	284	3981312	576	4
EPOC100540417	1.2V	119088	284	3981312	576	4
EP3U120F48417	1.2V	119088	532	3981312	576	4
EP3C120F484I7 EP3C120F780C7		110000	E03	0 0001010	E70	4
EP30120F48417 EP30120F78007 ED30130E70000	1.707					
EP3C120F48417 EP3C120F780C7 EP3C120F780C7	1 71/					
EP3C120F48417 EP3C120F780C7 ED3c130E780C7 Companion device	1 247					
EP3C120F48417 EP3C120F780C7 Companion device	1 7/		Ţ			
EP3C120F484I7 EP3C120F780C7 Companion device	1 747		Ŧ	,		
EP3CI 20149417 EP3CI 20179007 Companion device HardCopy II: Imit DSP & RAM to HardCo	ppy II device	resources	–	,		

....

For detailed information about creating a Quartus II project, refer to the *DDR and DDR2 SDRAM High-Performance Controller User Guide* or the Quartus II Help.

After creating a Quartus II project, instantiate the DDR2 SDRAM controller. This example uses the DDR2 SDRAM High-Performance Controller, which instantiates the ALTMEMPHY megafunction automatically. Select the **DDR2 SDRAM High-Performance Controller** in the **Interfaces** section of the MegaWizard Plug-In Manager. Name the controller "**DDR2**", as shown in Figure 4.

The subsequent files mentioned in this document that are generated by the MegaWizard and also other project files will have **DDR2** as the prefix for the file names. Figure 4. Invoking the DDR2 SDRAM High-Performance Controller using the MegaWizard Plug-In Manager

The rest of this subsection specifies the memory settings. Select the Cyclone III device with –7 speed grade. Then set the PLL reference clock frequency to 125 MHz and the memory clock frequency to 166.667 MHz. The 125 MHz PLL reference clock is provided by the on-board oscillator. Select the **Micron MT47H32M16CC-3** 333-MHz device. This 512-MB DDR2 device has a 16-bit data width. Figure 5 shows the memory settings panel.

c Controller S						
	bettings	/				
Cyclone III	1					
7	ן ו					
· ·						
125	MHz	(8000 p	s)			
166.667	MHz	(6000 p	s)			
Half 🗸		(83.3 M	Hz)			
64	bits					
			Memory Presets			
Value			Presets			
CAID			Micron MT9HTF6472AY-667			_
			Micron MT9HTF6472AY-80E			_
[c			Micron MT9HTF6472AY-53E			
			Micron MT47H32M16CC-3			٩.
			Micron MT47H32M16CC-3 v4 + MT47H32h	4880-3 ·	z1	
				1001-07		
	Show .	All			Load Pres	et
n MT47H32M16CC-3	3			Mo	dify parameter	rs
3.333MHz, 64MB, 16	bits wic	le, Discri	ete Device, CAS 5.0, 1 Chip Select			
7 does not support [DDR2 SD	RAM op	eration above 150.0MHz on the left or right l	/O bank:	s. This design	mu
emory clock frequer	ncy 166.	7 MHz a	nd 56 phase steps per cycle	-		
	Cyclone III 7 7 125 166.667 Half 64 (All) (All) (All) (All) (All) (All) 7 does not support [emory clock frequer	Cyclone III	Cyclone III	Cyclone III Image: Cyclone III 7 Image: Cyclone III 125 MHz (8000 ps) 166.667 MHz (8000 ps) Inference (83.3 MHz) 64 bits Memory Presets Image: Cyclone MI (All) Micron MT9HTF6472AY-667 (All) Micron MT9HTF6472AY-667 Micron MT9HTF6472AY-667 Micron MT47H32M160C-3 Micron MT47H52M160C-3 Micron MT47H52M160C-3 Micron MT47H52M160C-3 Micron MT47H52M160C-3 x4 + MT47H32M In MT47H32M160C-3 Micron MT47H5472AY-518 333MHz, 64MB, 16 bits wide, Discrete Device, CAS 5.0, 1 Chip Select Micron MT47H32M160C-3 x4 + MT47H32M 7 does not support DDR2 SDRAM operation above 150.0MHz on the left or right I enory clock frequency 166.7 MHz and 56 phase steps per cycle	Cyclone III MHz (8000 ps) 125 MHz (8000 ps) 166.667 MHz (8000 ps) Hair (83.3 MHz) 64 64 bits Micron MT9HTF6472AY-667 (All) Micron MT9HTF6472AY-50E (All) Micron MT9HTF6472AY-50E Micron MT9HTF6472AY-50E Micron MT47H32M16CC-3 Micron MT47H54M6CB-3 Micron MT47H32M16CC-3 Micron MT47H32M16CC-3 Micron MT47H32M16CC-3 n MT47H32M16CC-3 Micron MT47H32M16CC-3 7 does not support DDR2 SDRAM operation above 150.0MHz on the left or right I/O banks enory clock frequency 166.7 MHz and 56 phase steps per cycle	Cyclone III Image: Cyclone IIII Image: Cyclone IIII Image: Cyclone IIII Image: Cyclone IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Figure 5. Configuring the DDR2 SDRAM High-Performance Controller for the DDR2 Memory Interface

The MegaWizard uses the default parameters for the memory when you instantiate the controller. The default parameters are based on the memory datasheets. You can customize your memory presets by modifying the parameters. Click the **Modify parameters** button to modify the memory attributes, memory initialization options, or the

memory timing parameters in the **Preset Editor** menu, as shown in Figure 6. In this design example, modify the memory interface DQ width to 32 to suit the targeted memory width on the development kit. This will customize your memory presets.

Figure 6. Editing the Memory Presets to Create a Custom Memory

eremeter i stederies			
arameter categories	edory		
All Parameters	egory		
Memory Attributes			
Memory Initialization Options			
Memory Timing Parameters			
odifying any of the shaded parameters will result in th arameters	he creation of a custom preset.	Unito	
Output clock pairs from FPGA	3	pairs	~
Memory chip selects	1	bits	
Memory interface DQ width	32 🔻	/ bits	
Memory burst length	4	beats	
Memory burst ordering	Sequential		
Enable the DLL in the memory devices	Yes		
	Normal		
Memory drive strength setting		ohm	
Memory drive strength setting Memory on-die termination (ODT) setting	50		
Memory drive strength setting Memory on-die termination (ODT) setting Memory CAS latency setting	5.0	cycles	
Memory drive strength setting Memory on-die termination (ODT) setting Memory CAS latency setting Memory vendor	50 5.0 Micron	cycles	
Memory drive strength setting Memory on-die termination (ODT) setting Memory CAS latency setting Memory vendor Memory format	50 5.0 Micron Discrete Device		
Memory drive strength setting Memory on-die termination (ODT) setting Memory CAS latency setting Memory vendor Memory format Maximum memory frequency	50 5.0 Micron Discrete Device 333.333	cycles MHz	
Memory drive strength setting Memory on-die termination (ODT) setting Memory CAS latency setting Memory vendor Memory format Maximum memory frequency Column address width	50 5.0 Micron Discrete Device 333.333 10	Cycles MHz bits	
Memory drive strength setting Memory on-die termination (ODT) setting Memory CAS latency setting Memory vendor Memory format Maximum memory frequency Column address width Row address width	50 5.0 Micron Discrete Device 333.333 10 13	Cycles Cycles MHz bits bits	

Figure 7 shows the **PHY Settings** tab. In the **PHY Settings** tab, you need to input the **Board Skew** under **Board Timing Parameters**. The specified skew is across all memory interface signal types including data, strobe, clock, address and command, and is used to generate the PHY timing constraints for all paths. The default value is set to 20 ps. You need to update this number based on your board specifications because this number is used to calculate the overall system timing margin.

The DDR2 SDRAM device uses CK and CK# to clock the command and address signals into the memory. The controller names the CK and CK# signals as mem_clk and mem_clk_n, respectively. The skew between the CK or CK# and the DDR2 SDRAM-generated DQS signal is specified as t_{DQSCK} in the DDR2 SDRAM data sheet.

The DDR2 SDRAM has a write requirement (t_{DQSS}) that states the positive edge of the DQS signal on writes must be within $\pm 25\%$ ($\pm 90^{\circ}$) of the positive edge of the DDR2 SDRAM clock input. t_{DQSS} is defined as the time between the DQS latching edge to its associated clock edge. The controller generates the mem_clk and mem_clk_n signals using the DDR registers in the input/output element (IOE) to match with the DQS signal and reduce any variations across process, voltage, and temperature. The positive edge of the DDR2 SDRAM clock, mem_clk, is aligned with the DQS write to satisfy t_{DQSS} .

gutoro		About Documentat
Parameter 2 EDA Settings	3 Summary	
mory Settings > Pł	HY Settings Controller Settings	
Advanced PHY Settings	8	
Use dedicated PLL	outputs to drive memory clocks	
Dedicated memory of	clock phase: 0	
Use differential DQ		
Enable external acc	cess to reconfigure PLL prior to calibration	
🗌 Instantiate DLL exte	remaily	
Enable dynamic par	rallel on-chip termination (OCT)	
Address/Command C	Clock Settings	
Clock phase:	90 🗸	
Clock phase: Dedicated clock phas	90 V se: 90	
Clock phase: Dedicated clock phas	90 V se: 90	
Clock phase: Dedicated clock phase Board Timing Parameter	90 V se: 90 V rs	
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20	90 V 90 P rs ps	
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20 Auto-Calibration Simular	90 V se: 90 P rs ps tion Options	
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20 Auto-Calibration Simulat Calibrate using a si		
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20 Auto-Calibration Simulat Calibrate using a si Calibrate using all D		
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20 Auto-Calibration Simulat Calibrate using a si Calibrate using all D (will result in much	90 90 90 90 90 90 90 90 90 90 90 90 90 9	
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20 Auto-Calibration Simulat © Calibrate using a si © Calibrate using all D (will result in much Dynamic Deskew		
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20 Auto-Calibration Simulat Calibrate using a si Calibrate using all D (will result in much Dynamic Deskew Enable dynamic desi		
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20 Auto-Calibration Simulat Calibrate using a si Calibrate using all D (will result in much Dynamic Deskew Enable dynamic designed	90 V 90 V 90 V se: 90 V rs tion Options tion Options tion Options tion Options to noly to reduce simulation time (recommended) DQ pins to match the hardware behavior exactly n longer simulation time) eskew	
Clock phase: Dedicated clock phase Board Timing Parameter Board skew: 20 Auto-Calibration Simulat Calibrate using a si Calibrate using all D (will result in much Dynamic Deskew Enable dynamic des Varning: Cyclone III spe (or PL I will be generat		nks. This design mus

Figure 7. DDR2 SDRAM High-Performance Controller PHY Settings

The settings in the **Auto-Calibration Simulation Options** section are for RTL simulation only and are not applicable for gate-level simulation.

Figure 8 shows the **Controller Settings** panel.

Figure 8. DDKZ SDKAM High-Performance Controller Settings	Figure 8.	DDR2 SDRAN	1 High-Performance	Controller Settings
---	-----------	------------	--------------------	----------------------------

		manager - DL	OR2 SDRAM Hig	gn Performanc				
1	DDR2	SDRAM	High Pe	rforman	ce Contr	oller		
MegaCore'			_	_			About	Documentation
Parameter Settings	2 EDA							
4emory Set	tings > PH1	Y Settings	_ Controller Setting:	5 >				
Local Inter	face Settings							
🗌 Enabl	e error detectio	n and correction	logic					
Enabl	e user-controlle	ed refresh						
Local In	terface Protoco	ol lo						
⊖ Nat	ive interface	⊙ Avalon I	Memory-Mapped in	nterface				
Marping		d grada 7 doce to	nt summart DDP?	DRAM operation	shows 150 MbH+- o	n the laft or violt	t I/O banks Thi	s dasian must be
Warning: C	Cyclone III spee	d grade 7 does n	ot support DDR2 5	SDRAM operation	above 150.0MHz o	n the left or righ	t VO banks. Thi	s design must be
Warning: (Info: PLL v	Cyclone III spee	d grade 7 does n d with Memory cl	ot support DDR2 S	5DRAM operation 6.7 MHz and 56 pl	above 150.0MHz o nase steps per cy	n the left or righ	t WO banks. Thi	s design must be
Warning: (Info: PLL v	Cyclone III spee vill be generate	d grade 7 does n d with Memory cl	ot support DDR2 S Jock frequency 16	5DRAM operation 6.7 MHz and 56 pi	above 150.0MHz o nase steps per cyr	n the left or righ	t VO banks. Thi	s design must be
Warning: C Info: PLL v	Cyclone III speed vill be generated	d grade 7 does n d with Memory cl	ot support DDR2 S ack frequency 16	SDRAM operation 5.7 MHz and 56 pi	above 150.0MHz o lase steps per cyr	n the left or righ le	t I/O banks. Thi	s design must be
Warning: (Info: PLL v	Cyclone III speer	d grade 7 does n d with Memory cl	ot support DDR2 S ock frequency 16	5DRAM operation 6.7 MHz and 56 pl	above 150.0MHz o nase steps per cyr	n the left or righ de	t WO banks. Thi	s design must be
Warning: (Info: PLL v	Cyclone III speed	d grade 7 does n d with Memory cl	ot support DDR2 S ock frequency 16	5DRAM operation 6.7 MHz and 56 pl	above 150.0MHz o nase steps per cyu	n the left or righ	t I/O banks. Thi	s design must be
Warning: C Info: PLL v	Cyclone III speed	d grade 7 does n d with Memory cl	ot support DDR2 S ock frequency 16	SDRAM operation 6.7 MHz and 56 pl	above 150.0MHz o lase steps per cyr	n the left or righ le	t I/O banks. Thi	s design must be

Choose your local interface setting in the **Controller Settings** panel. Turn on the **Enable error detection and correction logic** option if you want to use error code correction (ECC). If you have your own refresh requirements, then turn on **Enable user-controlled refresh**. Next, select the **Local Interface Protocol** for the memory interface. The default interface is the **Avalon Memory-Mapped Interface** that allows you to easily connect to other Avalon[®] Memory-Mapped peripherals. Figure 9 shows the **EDA** panel. The MegaWizard can generate the simulation model for simulating the memory controller in either Verilog HDL or VHDL.

🔨 MegaWizard Plug-In Manager - DDR2 SDRAM High Performance Controller 📃 🗖 🔀
DDR2 SDRAM High Performance Controller
Parameter Settings Settings Settings
r Simulation Libraries
To properly simulate the generated design files, the following simulation model file(s) are needed. File Description attera_mf Attera megafunction simulation library 220model Attera LPM version 2.2.0 simulation library sgate IP functional simulation model is a cycle-accurate VHDL or Verilog HDL model produced by the Quartus II software. The model allows for fast functional simulation of IP using industry-standard VHDL and Verilog HDL simulators. Only use these models for simulation and expressly not for synthesis or any other purposes. Using these models for synthesis creates a nonfunctional design. Image: Cenerate simulation model
 Timing and Resource Estimation If you are synthesizing your design with a third-party EDA synthesis tool, you can generate a netlist for the synthesis tool to estimate timing and resource usage for this megafunction. Generate netlist Warning: Cyclone III speed grade 7 does not support DDR2 SDRAM operation above 150.0MHz on the left or right I/O banks. This design must be placed or the synthesis of the synthesis of the synthesis of the synthesis of the synthesis tool to estimate timing and resource usage for this megafunction.
Info: PLL will be generated with Memory clock frequency 166.7 MHz and 56 phase steps per cycle
Cancel < <u>B</u> ack <u>N</u> ext > <u>Finish</u>

In the **Timing and Resource Estimation**, you can choose to generate a netlist if you are synthesizing your design with a third-party EDA synthesis tool.

Figure 10 shows the **Summary** panel.

Figure 10. Summary

	ger - DDR2 SDRAM High Performance Controller	
DDR2 SD	RAM High Performance Controller	Documentation
Parameter 2 FDA 3 Su		-
Settings		
Turn on the files you wish to ger to generate the selected files. TI D:\CIII_DDR2	nerate. A gray check box indicates a file that is automatically generated, all other files are option he MegaWizard Plug-In Manager creates the selected files in the following directory:	al. Click Finish
Additional files may be generated	d. Please see the MegaCore function report file for a complete list of generated files.	
FILE	Description	
DDR2.v	Variation file	
DDR2.bsf	Quartus II symbol file	
DDR2.cmp	VHDL component declaration file	
DDR2_bb.v	Verilog HDL black-box file	
DDR2 html	MegaCore function report file	
Warning: Cyclone III speed grade nfo: PLL will be generated with M	7 does not support DDR2 SDRAM operation above 150.0MHz on the left or right I/O banks. This femory clock frequency 166.7 MHz and 56 phase steps per cycle	: design must k

•••

For detailed step-by-step instructions about configuring the DDR2 SDRAM High-Performance Controller, refer to the DDR and DDR2 SDRAM High-Performance Controller User Guide.

Click Finish to generate the controller.

Step 3: Perform RTL/Functional Simulation (Optional)

After instantiating the DDR2 SDRAM High-Performance Controller, it generates an example design and driver for testing the memory interface. Figure 11 shows a system-level diagram of the example design that the DDR2 SDRAM High-Performance Controller MegaWizard creates for you.

Note to Figure 11:

 The ALTMEMPHY megafunction automatically generates the PLL. The PLL is part of the ALTMEMPHY megafunction.

> For more information about the different files generated by the DDR2 SDRAM High-Performance Controller, refer to the DDR and DDR2 SDRAM High-Performance Controller User Guide.

> > You can simulate the memory interface with the MegaWizard Plug-In Manager-generated IP functional simulation model. You should use this model in conjunction with your own driver or the testbench generated by the MegaWizard that issues read and write operations. The memory model file is also automatically generated by the MegaWizard in the testbench.

> > Use the functional simulation model with any Altera-supported VHDL or Verilog HDL simulator. This walkthrough uses the Quartus II NativeLink feature to run Altera-ModelSim[®] software edition to perform the simulation.

For more information about how to set up the simulation in Quartus II software using NativeLink, refer to the *DDR and DDR2 SDRAM High-Performance Controller User Guide*.

Figure 12 shows an Altera ModelSim RTL simulation.

Figure 12. Altera ModelSim RTL/Functional Simulation

	10000 A	°6 ₩	•	1 + 1	100	pa 🛊 👔	B B	6 6		Contains	1	3	X4 •X		A't:	ſ		
9100	९.∎≍ ३+ %															-		
ace di di X	Objects =	wave -	default															
DDR2_example_t endt dut DDR2_inst dut DDR2_inst dives	a a_dolayed be ba_delayed BOARD_CLX_DEL_ BOARD_DOS_DEL	****	top_tb/olk_n p_tb/reset_n mem_reset_n le_top_tb/a top_tb/ba top_tb/os_n	0 1 HZ 000000000 00 St1	0000000 00	a constant												
#ASSIGN#1 #ASSIGN#1 mem #MPLICIT-WIF #MPLICIT-WIF	cas_n cas_n_delayed cke cke_delayed ck		_lop_tb/cke e_top_tb/cdl lop_tb/las_n lop_tb/cas_n lop_tb/we_n e_top_tb/dm	511 510 511 511 511 0000	0000													
MASSIGN#128 MASSIGN#129 MASSIGN#130 MASSIGN#131 MASSIGN#132 MASSIGN#133	ck_lo_ram ck_lo_ram_n ck_to_ratem ck_to_ratem_n ck_to_ratem_n CLOCK_TICK_IN_F		clk_to_schem _to_schem_n b/clk_to_ram clk_to_ram_n b/a_delayed ./ba_delayed	000 111 5:1 5:0 0000000000 00	000 1111 111 1000 00000000		2 2111 20	1 2000	1111 J000 2000 J111	7111 70 7000 71	60 Diii 11 DOO	1000 1111	1000 11	11 2000 00 2111	1111 X000 2000 X111	2111 20	0 2(111 2)	111 10
#ASSIGN#136 #ASSIGN#145 #ALW/AYS#20 #ASSIGN#210 #ASSIGN#219 #INITIAL#221	cmd_bus cmd_bus_watches_ cs_n cs_n_delayed D90_DEG_DELAY dm		ck.e_delayed /odl_delayed s_n_delayed s_n_delayed s_n_delayed	511 510 511 511 511														
MASSIGN#241 MASSIGN#242 MASSIGN#243 MASSIGN#244 MASSIGN#245	dm_delayed DM_DQS_WIDTH GATE_BOARD_CL GATE_BOARD_DC gLOCAL_DATA_BI		_n_delayed ./dm_delayed _tb/mem_dq tb/mem_dqs ./mem_dqs ./mem_dqs .mem_dqs	5:1 0000 0000000000 0000 0001 01	0000 00000000 0000 0001	000000	0000000	00000										
#ASSIGN#246 #ASSIGN#247 #ASSIGN#248 #ASSIGN#249 #NITIAL#252	GLODALJE_DWID GMEM_BANK_BITS GMEM_CHIPSELS GMEM_COL_BITS GMEM_COL_BITS		est_complete piete_count e_top_tb/pnt pni_per_byte	5:1 1. 5:1 1111111111	0 111111111	111111												
MALWAYS#28 MALWAYS#30	gMEM_ROW_BITS gNUM_CLOCK_PA mem_dg mem_dgt mem_dgt		.er/local_rdata cal_rdata_vak ./local_wdata	1510 ddea654a15	0+30+2344 0+38+2344	237 lie 237 lie	19927945. 199927945.	8-0030 2-0038	3553465 35553465	1.4=5600 1.4=5600	05 170645 05 170645	elica(255) elica(255)	c01e0 le c01e0 le	075kc250 075kc258	laab2363)o1 laab2863io1	1000000 GSmaf5-	000000000 a15497b27	000000 7828 9 7
- 	mem_reset_n odt odt_delayed ont		Now Euror 1	671000 ps	600 ra			253	30 m			243	40 m			2836	50 ns	
	<u> </u>		9															

Step 4: Add Constraints

When you create your memory controller, the MegaWizard generates the following constraint files for timing constraint and pin assignment.

- DDR2_phy_ddr_timing.sdc
- DDR2_pin_assignments.tcl

The **DDR2_phy_ddr_timing.sdc** file is used for constraining the clock and input/output delay in the ALTMEMPHY megafunction. Enable the TimeQuest Timing Analyzer before compiling your design. To enable the TimeQuest Timing Analyzer, perform the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. From the **Category** list, click **Timing Analysis Settings** and select **Use TimeQuest Timing Analyzer during compilation**.
- 3. Click OK.

Next, to add the timing constraints, perform the following steps:

- On the Settings dialog box, click Timing Analysis Settings and select TimeQuest Timing Analyzer. The TimeQuest Timing Analyzer page appears.
- 2. Specify the SDC file and click Add (Figure 13).
- 3. Click OK.

	TimeQuest Timing Analyzer		
- Files - Libraries	Specify TimeQuest Timing Analyzer op	tions.	
Device Operating Settings and Conditions Voltage Temperature Compilation Process Settings Early Timing Estimate Incremental Compilation EDA Tool Settings Design Entry/Synthesis Simulation Timing Analysis Formal Verification Physical Synthesis Board-Level Analysis & Synthesis Settings VHDL Input Verilog HDL Input Default Parameters	SDC files to include in the project SDC filename: File name DDR2_phy_ddr_timing.sdc ✓ Enable Advanced I/0 Timing ✓ Enable multicorner timing analysis of □ December the set of the	Type Synopsys Design Constrain during compilation	Add Remove Up Down
Synthesis Netlist Optimizations	- Tol Sprint File for customizing reports	during compilation	
Timing Analysis Settings	Tcl Script File name:		
Be Classic Timing Analyzer Settings Assembler Design Assistant SignalTap II Logic Analyzer Logic Analyzer Interface Simulator Settings	Description: Associates a Synopsys Design Constr	aint File (.sdc) with this project.	

Figure 13. Specifying the Timing Constraint SDC File to the Example Design

The **DDR2_pin_assignments.tcl** file is used for making the I/O standard assignment to the memory interface pins. To run the Tcl file, on the **Tools** menu, click **Tcl Scripts**. Select the Tcl file and click **Run**, as shown in Figure 14. Upon execution of the file, the information is added into your Quartus II assignment. Alternatively, you can also use the Tcl Console to run the Tcl file.

_

FcI Scripts Libraries: Project DDR2_phy_dd_pins DDR2_phy_report_timing DDR2_pin_assignments Car Car Car dtw dtw_timing_analysis Preview:	
Libraries: Project DDR2_phy_ddr_pins DDR2_phy_report_timing DDR2_phy_report_timing Add to To Car Car Preview: Preview:	
Project DDR2_phy_ddr_pins Oper DDR2_phy_report_timing Add to To Correlates/72/quartus/common/tcl/apps/gui/ Add to To Correlates/72/quartus/common/tcl/apps/gui/ Carrelates/72/quartus/common/tcl/apps/gui/ Correlates/72/quartus/common/tcl/apps/gui/ Carrelates/72/quartus/common/tcl/apps/gui/	un
Lin DDR2_cini_assignments Add to Tr Control co	n File
Image: Control of Control o	ol Toolbar
Preview:	ncel
Preview:	
<pre>#Please Run This Script Before Compiling if (![info exists ::ppl_instance_name]) (set ::ppl_instance_na set_instance_assignment -name CURRENT_STRENGTH_NEW "MAXIMUM CU set_instance_assignment -name IO_STANDARD "SSTL-18 CLASS I" -t</pre>	ame { JRREN :0 \${
<pre>set_instance_assignment -name CURRENT_STRENGTH_NEW "12MA" -to set_instance_assignment -name CURRENT_STRENGTH_NEW "12MA" -to</pre>	\${:: \${::
set instance assignment -name CURRENT STRENGTH NEW "12MA" -to	\${::
set instance assignment -name IO_SIANDARD "SSIL-10 CLASS I" -t	10 91 10 \${
set instance assignment -name IO STANDARD "SSTL-18 CLASS I" -t	:0 \${
set instance assignment -name CURRENT STRENGTH NEW "12MA" -to	\${::
set_instance_assignment -name CURRENT_STRENGTH_NEW "12MA" -to	\${::
set_instance_assignment -name CURRENT_STRENGTH_NEW "12MA" -to	\$(::
set_instance_assignment -name IO_STANDARD "SSTL-18 CLASS I" -t	
set_instance_assignment -name IO_STANDARD "SSTL-18 CLASS I" -t	:0 \${
	:o\${ :o\${ <mark>``</mark>

Figure 14. Running Pin Assignment Contraint Script in the Tcl Script Panel

After running the **DDR2_pin_assignments.tcl** file, you can assign the I/O locations based on your board design in the **Assignment Editor** or **Pin Planner**. In this design example, assign the I/O locations based on the Cyclone III FPGA development kit board. The 32-bit interface is located at the bottom I/O banks of the device.

Step 5: Compile Design and Verify Timing Closure

Before compiling the design, set the top level entity of the project to the example design created by the High-Performance Controller in the previous section. To do so, perform the following steps:

- 1. On the File menu, click **Open**.
- 2. Browse to *<variation name>_example_top* and click **Open**.
- 3. On the Project menu, click Set as Top-Level Entity.

After setting the design example as the top level entity, set the Quartus II software to ensure the remaining unconstrained paths are routed with the highest speed and efficiency. To do this, perform the following steps:

- 1. On the Assignments menu, click **Settings**. The **Settings** dialog box appears.
- 2. From the Category list, click Analysis & Synthesis Settings.
- 3. Define the **Optimization Technique** setting. The default setting is **Balanced**, as shown in Figure 15.

Figure 15. Default Setting for Optimization Technique

ogoly.							
General	Analysis & Synthesis Setting	js					
- Files	Specify options for analysis & st	unthesis. Thes	a options control Quartus	ll Integra	ited Sunthesis and do not		
- Device	affect VQM or EDIF netlists unl	ess WYSIWY(à primitive resynthesis is (nabled.	ited synthesis and do not		
- Operating Settings and Conditions							
- Voltage	Optimization Technique		Auto Global Options	(MAX De	vices Only)		
Temperature	C Speed		🔽 Clock				
- Lompilation Process Settings Early Timing Estimate	Balanced		🔽 Output Enable				
Incremental Compilation	C Area		Register Contro	Signals			
- EDA Tool Settings					12		
Design Entry/Synthesis	Create debugging nodes fo	r IP cores					
- Simulation	Auto DSP Block Replacem	ent	Auto Open-Drain Pin	s			
Formal Verification	Auto ROM Replacement		Auto Parallel Expand	ers			
Physical Synthesis	Auto RAM Replacement		Power-Up Don't Care				
Board-Level	Auto RAM Block Balancing						
Analysis & Synthesis Settings	Restructure Multiplexers:	Auto		-			
VHUL Input	DevuerDieu meurer entiminations	Normal.com	nilation	_			
Default Parameters	r owen iay power opumization.	Tronnarcon	piloton	<u> </u>	1		
Synthesis Netlist Optimizations	HDL Message Level:	Level2		_	Advanced		
 Fitter Settings Physical Synthesis Optimizations 	More Settings						
- Timing Analysis Settings	Description:						
ImreQuest Timing Analyzer Classic Timing Analyzer Settings Assembler Design Assistant SignalTap II Logic Analyzer Logic Analyzer Interface Simulator Settings Simulator Verification Simulation Output Files PowerPlay Power Analyzer Settings	Specifies the overall optimizati logic usage, or balance high p	on goal for Ana erformance wit	llysis & Synthesis: attemp h minimal logic usage.	t to maxin	nize performance, minimize		
T owen idy Fower Andiyzer Settings							

4. Next, from the **Category** list, click **Fitter Settings** and set the **Fitter effort**. The default setting is **Auto Fit**, as shown in Figure 16.

General	Filter Settings
Files	The settings
- Libraries - Device	Specify options for fitting.
 Uperating Settings and Conditions Voltage 	Timing-driven compilation
Compilation Process Settings Early Timing Estimate	Optimize fast-corner timing
Incremental Compilation EDA Tool Settings Design Entry/Suptracts	PowerPlay power optimization: Normal compilation
- Simulation	Fitter effort
Timing Analysis	G Standard Fit (highest effort)
- Formal Verification	Fast Fit (up to 50% faster compilation / may reduce fmax)
Physical Synthesis	 Auto Fit (reduce Fitter effort after meeting timing requirements)
Board-Level	Desired worst case slack (margin): 0
- Analysis & Synthesis Settings	
Verilog HDL Input	Limit to one fitting attempt
- Default Parameters	
Synthesis Netlist Optimizations	Seed: 1
- Fitter Settings	
Physical Synthesis Optimizations	More Settings
Timing Analysis Settings	
 TimeQuest Timing Analyzer 	
∃- Classic Timing Analyzer Settings	Description:
Assembler Design Assistant SignalTap II Logic Analyzer Logic Analyzer Interface Simulator Settings Simulation Verification Simulation Output Files PowerPlay Power Analyzer Settings	Controls the fitter's trade-off between performance and compilation speed. Auto Fit adjusts the fitter optimization effort to minimize compilation time, while still achieving the design timing requirements. The FITTER_AUTO_EFFORT_DESIRED_SLACK_MARGIN option can be used to request that Auto Fit apply sufficient optimization effort to achieve additional timing margin. Standard Fit will use maximum effort regardless of the design's requirements, leading to higher compilation time and more margin on easier designs. For difficult designs, Auto Fit and Standard Fit will both use maximum effort. Fast Fit will decrease optimization effort to reduce compilation time, which may degrade design performance.

Figure 16. Default Setting for Fitter Effort

You are now ready to compile your design. To do so, perform the following steps:

- 1. On the Processing menu, click **Start Compilation** to compile the design.
- 2. After compilation is successful, on the Tools menu, select **TimeQuest Timing Analyzer**.
- 3. Generate the timing margin report for your memory interface design by executing the **Report DDR** function from the **Tasks** pane of the TimeQuest Timing Analyzer window, as shown in Figure 17.

Executing the **Report DDR** task automatically runs the <*variation_name>_phy_report_timing.tcl* timing margin report script generated by the MegaWizard Plug-In Manager when the megafunction variation was created.

For more information about the TimeQuest Timing Analyzer, refer to the *Quartus II TimeQuest Timing Analyzer* chapter in volume 3 of the *Quartus II Handbook*.

Figure 17. TimeQuest Timing Analyzer Window

Figure 18 shows the output of the Report DDR task. The Report pane contains a new folder titled **DDR** with detailed timing information on the most critical paths, and a timing margin summary similar to the one reported on the TimeQuest Console.

The report timing script provides information about the following margins and paths:

- Address/command setup and hold margin
- Half-rate address/command setup and hold margin
- Core setup and hold margin
- Core reset/removal setup and hold margin
- DQS vs CK setup and hold margin
- Mimic path
- Write setup and hold margin
- Read capture setup and hold margin

For more information about the timing analysis, refer to *AN* 438: Constraining and Analyzing Timing for External Memory Interfaces in Stratix III and Cyclone III Devices.

Step 6: Adjust Constraints

Even though the MegaWizard generates the controller with the correct settings and you do not see any timing violation, you can still manually adjust some of the constraints in order to get the best timing that suits your system. The timing margin report shows the address and command datapath with a 2.668 ns setup and 1.601 ns hold margin. Adjusting the clock that is regulating the address and command output registers can make the setup and hold time more balanced by decreasing the setup margin and increasing the hold margin on the address and command datapath. To find out which clock is clocking the address and command registers, click on the address/command report in the Report panel in TimeQuest timing analyzer and select the path for the setup or hold time for the address and command datapath as Path Summary (Figure 19) or in Waveform View (Figure 20).

🙂 Quartus	s II TimeQuest Timing Analyzer - D:/CIII_DDR2	2/CIII_DOR2 - CIII_DOR2					
File Edit W	Wew Netlist Constraints Reports Script Tools Wi	indow Hep					
• Report	TimeQuest Timing Analyzer Summary	st (100R2_controller_phy_inst alt_mem_phy_inst D0R2_phy Address Command (setup) O 🕈					
E 💆 /	Advanced I/O Timing	nd Info Summay of Paths					
	DDR 1 2655	k From Node To Node To Node Lounch Clock Latch Clock Latch Clock and The Control of the Control					
	DDR2_inttDDR2_controller_phy_int 2 2.675	5lialpt_componentiauto_generatedptTick(2) nem_c1_r(0)lialpt_componentiauto_generatedptTick(2)nstDDR2_pty_ck_m_mem_ck_r(0]_ac_tal					
	DDR2_instDDR2_controler_phy_ins 32.675	 					
	DDR2_instDDR2_controller_phy_ins DDR2_instDDR2_controller_phy_ins DDR2_instDDR2_controller_phy_ins	1					
	DDR2_instDDR2_contoler_phy_ins	5 Eahrd comonantiutin nanacaladhillish011men or xIII Eahrd comonantiutin nanacaladhillish011 x inti0082 riu rk n men ektil ar fall 🔤					
	DDR2_instDDR2_controller_phy_ins DDR2_instDDR2_controller_phy_ins	Setup slack is 2.660 Path #1: Setup slack is 2.660					
	DDR2_instDDR2_controller_phy_ins Path Sum	mnary Statistics Data Path Waveform Path Statistics Data Path Waveform					
	PDD2 intDD2 contain in Tala	rrrve John Property Value Property V	\mathbf{N}				
Tasks	1 1.90	00 1.500 2 To Node mem_cr_n(0)	$\langle \cdot \rangle$				
🗸 📑 Op	pen Project 2 1.500 3 1.500	00 0.000 3 3 Launch Clockphy_indD0h2_phy_at_mem_phy_cii_nutch[plabpl_componentiato_penestedp01ick[2](NVERTED) 00 e700 1 4 Latch Clockphy_Dentedpi actionated the indiate mem phy indipation for mem cik (n1) act (all INVERTED)	$\langle \rangle$				
	Create Timing Netlist 4 1 500	87 0.000 RR IC 1 5 Data Anival Time 5.613					
12 12	Read SDC File 2313 Hodate Timing NetExt 6 4514	13 0.013 HH CELL 1 0.046 Hogund Tree 8.291 4 2.201 HR IC 5 17 Stock 2.688	$\langle \rangle$				
当 Reg	ports 7 -2.73	327 - 7.251 RR COMP 1					
8-3	Individual Reports 8 40.52 Beport Francischmany 9 40.52	21 2.216 PP R. 1 21 0.000 FF CELL 421	$\langle \rangle$				
1 1 1 1	Report Setup Summary 10 1.005	09 1.530 FF IC 1	$\langle \rangle$				
	TI Report Recovery Summary 121 and						
	Path Summary Statistics	Data Path Waveform					
	Property	Value					
 ✓ [1 From Node	inst[alt_mem_phy_inst]DDR2_phy_alt_mem_phy_ciii_inst[clk]pll[altpll_component]auto_generate	d pl 1 clk[2]				
	2 To Node	mem_cs_n[0]					
t	3 Launch Clock	Launch Clockphy_inst[DDR2_phy_alt_mem_phy_ciii_inst[clk]pll[altpll_component]auto_generated[pl1]clk[2] (IN					
₽-⊆ × [97]	4 Latch Clock	2_inst[DDR2_controller_phy_inst]alt_mem_phy_inst[DDR2_phy_ck_n_mem_clk_n[1_ac_fall (IN					
98 99	5 Data Arrival Time	5.613					
100	6 Data Required Time	8.281					
102	7 Slack	2.668					
104	Info: Read Capture (All Conditions) Info: Write (All Conditions)) 0.125 0.125					
106	teb						
	- (History I	8					
e \ console	ss F1	Beaty					
the state prove		Press 1					

Figure 19. Path Summary for the Address and Command Datapath

Figure 20. Waveform View for the Address and Command Datapath

The report indicates that clk2 of the PLL is clocking the address and command registers. Go to the PLL megafunction and change the phase setting of clk2. For this design, the initial phase setting of clk2 is set to -90° with reference to the system clock. By adjusting clk2 to later than -90° (meaning launching the address and command later), the setup margin is decreased and the hold margin is increased.

After modifying the clk2 phase setting to -55°, recompile the design for the new PLL setting to take effect. Run the report timing script again. Figure 21 shows the timing margin reported in the Quartus II software after adjusting the phase setting of clk2. The address and command datapath now has a more balanced 2.117 ns setup and 2.128 ns hold margin.

Figure 21. Timing Margin Reported After Adjusting clk2

Step 7: Determine Board Design Constraints

The Cyclone III FPGA supports the series on-chip termination (OCT) to improve signal integrity and simplify the board design. The Cyclone III device supports both OCT with or without calibration. In addition, you can choose the resistance to be either 25 Ω or 50 Ω , depending on the I/O standards you are using for the memory interface and the termination scheme.

Apart from that, the DDR2 SDRAM supports the dynamic parallel on-die termination (ODT) feature that you can turn on when the FPGA is writing to the DDR2 SDRAM memory and turn off when the FPGA is reading from the DDR2 SDRAM memory. The ODT features are available in settings of 150Ω , 75Ω , and 50Ω . The $50-\Omega$ setting is only available in DDR2 SDRAM with operating frequencies greater than 267 MHz.

Refer to the respective memory data sheet for additional information about the available settings for the ODT and the output driver impedance features, and the timing requirements for driving the ODT pin in DDR2 SDRAM.

For this design walkthrough, which is targeted for the Cyclone III FPGA development kit, drive strength setting is used together with Class I termination. Using Class I termination allows a higher maximum DDR2 SDRAM clock frequency and reduces the number of external resistors required on the board. You can adjust the current strength for the output pin of the Cyclone III device according to your board setup. If the current strength is too high, you might see excessive overshoot and undershoot of your signal. Use the oscilloscope to check the signal overshoot and undershoot.

Figure 22 shows the setup for write operation to the DDR2 SDRAM memory with Class I termination together with the drive strength setting of the Cyclone III FPGA device. In this setup, the driver's (FPGA) output impedance matches that of the transmission line resulting in optimal signal transmission to the DDR2 SDRAM memory. On the receiver (DDR2 SDRAM memory) side, it is properly terminated with matching impedance to the transmission line, through the external pull-up resistor to V_{TT} to eliminate any ringing or reflection.

Figure 22. Write Operation to DDR2 SDRAM Memory with Class I Termination

Figure 23 shows the setup for read operation from the DDR2 SDRAM memory.

If you choose not to use the drive strength setting, you can use the OCT feature of the Cyclone III FPGA device instead.

Finally, the loading seen by the FPGA during writes to the memory is different between a system using dual-inline memory modules (DIMMs) versus a system using components. The additional loading from the DIMM connector can reduce the edge rates of the signals arriving at the memory, thus affecting available timing margin.

For more information about the Cyclone III OCT, refer to the *Cyclone III Device I/O Features* chapter in volume 1 of the *Cyclone III Device Handbook*.

 For detailed information about understanding the different effects on signal integrity design, refer to AN 408: DDR2 Memory Interface Termination, Drive Strength & Loading Design Guidelines.

Conclusion

Cyclone III devices have dedicated circuitry to interface with DDR2 SDRAM at speeds up to 200 MHz with comfortable and consistent margins. The advanced clocking features available in Cyclone III devices allow a high-performance, versatile interface to DDR2 and DDR SDRAM. For applications requiring lower power consumption and the greater memory bandwidth offered by DDR2 and DDR SDRAM, Altera offers a complete memory solution for Cyclone III FPGA devices.

References

- JEDEC Standard Publication JESD79C, DDR AND DDR2 SDRAM Specification, JEDEC Solid State Technology Association.
- MT47H32M16 DDR2 SDRAM Data Sheet, Micron Technology, Inc.

Referenced Documents

- This application note references the following documents:
- ALTMEMPHY Megafunction User Guide
- AN 408: DDR2 Memory Interface Termination, Drive Strength and Loading Design Guidelines
- AN 438: Constraining and Analyzing Timing for External Memory Interfaces in Stratix III and Cyclone III Devices
- AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction
- Cyclone III Device I/O Features chapter in volume 1 of the Cyclone III Device Handbook
- DDR and DDR2 SDRAM Controller Compiler User Guide
- DDR and DDR2 SDRAM High-Performance Controller User Guide
 Design Debugging Using the Completence II Embedded Logic Augustum
- Design Debugging Using the SignalTap II Embedded Logic Analyzer chapter in volume 3 of the Quartus II Handbook
- External Memory Interfaces in Cyclone III Devices chapter in volume 1 of the Cyclone III Device Handbook
- Selecting the Right High-Speed Memory Technology for Your System white paper
- The Quartus II TimeQuest Timing Analyzer chapter in volume 3 of the Quartus II Handbook.

Document Revision History

Table 5 shows the revision history for this document.

Table 5. Document	Revision History	
Date and Document Version	Changes Made	Summary of Changes
May 2008 v2.1	Replaced Table 1 and Table 2.Added Table 3.	_
December 2007 v2.0	 Updated "Introduction" section. Added new Table 2. Updated Figure 1. Updated "FPGA Design Flow" section including changes to Steps 1, 2, 3, 4, 5, 6 and added new Table 4 and Step 7. Removed old Figure 2. Updated "Example Walkthrough for 167-MHz DDR2 SDRAM Interface" section including changes to Steps 1, 2, 3, 4, 5, 6, 7. Updated Figures 3, 4, 5, 6, 7, 8, 13, 14, 19, 21. Added new Figures 8, 9, 10, 11, 15, 16, 20, 22. Removed old Figures 9 and 21. Added "Referenced Documents" section. Added "Design Checklist". 	_
March 2007 v1.0	Initial Release.	_

Design Checklist

This section contains a design checklist that you can use when implementing DDR2 and DDR2 SDRAM memory interfaces in Cyclone III devices. Use the checklist to verify that you have followed the guidelines for each stage of your design.

Project Name:	
Date:	

Select Device

	Done	N/A	
1			Have you selected the memory interface frequency of operation and bus width? And, have you selected the FPGA device density and package combination that you will be targeting?
			Ensure that the target FPGA device supports the desired clock rate and memory bus width.

Ensure that the target FPGA device supports the desired clock rate and memory bus width. For detailed device resource information, refer to the *External Memory Interfaces in Cyclone III Devices* chapter in volume 1 of the *Cyclone III Device Handbook*.

Instantiate PHY and Controller

	Done	N/A	
2			Have you parameterized and instantiated the ALTMEMPHY megafunction for your target memory interface?
			When instantiating multiple instances of the ALTMEMPHY megafunction, ensure effective sharing of device resources and appropriate constraints by referring to <i>AN 462: Implementing Multiple Memory Interfaces Using the ALTMEMPHY Megafunction.</i>
3			Have you connected the PHY's local signals to your driver logic and the PHY's memory interface signals to top-level pins?
			Ensure that the local interface signals of the PHY are appropriately connected to your own logic. If the ALTMEMPHY megafunction is compiled without these local interface connections, you may encounter compilation problems when the number of signals exceeds the pins available on your target device.

Functional Simulation

Design Guidelines for Implementing DDR and DDR2 SDRAM Interfaces in Cyclone III Devices

	Done	N/A	
4			Have you simulated your design using the RTL functional model?
			Use the ALTMEMPHY megafunction functional simulation model in conjunction with your own driver logic/testbench, and a memory model to ensure proper read/write transactions to the memory.
Timir	ng Clos	ure	
	Done	N/A	
5			Have you added constraints to the PHY and the rest of your design?
			The ALTMEMPHY megafunction is constrained when you use the generated .sdc file and .tcl files. However, you may need to adjust these settings to best fit your memory interface configuration.
			Add pin assignment constraints and pin loading constraints to your design. Ensure that generic pin names used in the constraint script are modified to match your top-level pin names. Note that the loading on memory interface pins is dependent on your board topology (memory components, single DIMM, multiple DIMMs, single rank DIMM, and so on).
6			Have you compiled your design and verified timing closure using all available models?
			Run the <i><variation_name>_</variation_name></i> report_timing.tcl file to generate a custom timing report for each of your ALTMEMPHY megafunction instances. Repeat this process using all device timing models (slow 0°C, slow 85°C, fast 0°C).
7			If there are timing violations, have you adjusted your constraints to optimize timing?
			Adjust PLL clock phase-shift settings or appropriate timing/location assignments margins for the various timing paths within the ALTMEMPHY megafunction.

Gate-Level Simulation

	Done	N/A	
8			Have you performed a timing simulation on your design?

Board-Level Considerations

	Done	N/A				
9			Have you selected the termination scheme and drive-strength settings for all the memory interface signals on the memory side and the FPGA side?			
			Ensure that appropriate termination and drive strength settings are applied on all the memory interface signals, and verified using board-level simulations.			
			Cyclone III devices support on-chip termination. Altera recommends the calibrated parallel OCT 50 setting for unidirectional input signals from the memory, and the calibrated series OCT 50 setting for unidirectional output signals to the memory. When using the OCT feature on the Stratix III device, the programmable drive-strength feature is unavailable. If there are multiple loads on certain FPGA output pins (for example, if the address bus is shared across many memory devices), use of maximum drive-strength setting may be preferred over the series OCT setting. Use board-level simulations to pick the optimal setting for best signal integrity.			
			On the memory side, Altera recommends the use of external parallel termination on input signals to the memory (write data, address, command, and clock signals).			
10			Have you performed board-level simulations to ensure electrical and timing margins for your memory interface?			
			Ensure you have a sufficient eye opening using simulations. Be sure to use the latest FPGA and memory IBIS models, board trace characteristics, drive strength and termination settings in your simulation.			
			Any timing uncertainties at the board level that you calculate using such simulations must be used to adjust the input timing constraints to ensure the accuracy of the Quartus II timing margin reports.			
System Verification						
	Done	N/A				

11 🗌 🗍

Have you verified functionality of the memory interface in the system?

101 Innovation Drive San Jose, CA 95134 www.altera.com Technical Support: www.altera.com/support/ Literature Services: literature@altera.com Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and services at any time without notice. Altera assumes no responsibility or liability

arising out of the application or use of any information, product, or service described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device specifications before relying on any published information and before placing orders for products or services.

