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Evaluation of MOSFETs for Terahertz Detector Arrays

by

Gregory J. Fertig

Abstract

The terahertz (THz) region of the electromagnetic spectrum is one of the last remaining
regions that has yet to be fully characterized. THz imaging is one of the foremost drivers
of this technology gap and has the potential to push development in the near term to a
similar capability level as infrared (IR). Properties of THz radiation are introduced, along
with promising current applications. Interest in array based imaging of THz radiation
(T-Rays) has gained traction lately, specifically using a CMOS process due to its ease
of manufacturability and the use of MOSFETs as a detection mechanism. The thoery
outlined explains that incident terahertz radiation on to the gate channel region of a
properly configured MOSFET can be related to plasmonic response waves, which change
the electron density and potential across the channel producing a photoinduced response.
This work utilizes a test chip fabricated to investigate these effects. The 0.35 µm silicon
CMOS MOSFETs tested contain varying structures, providing a range of detectors to
analyze. Included are individual test MOSFETs for which various operating parameters
and modes are studied and results presented. The focus on single transistor-antenna
testing provides a path for discovering the most efficient combination for coupling 0.2 THz
band energy. Specifically introduced, is a novel source region extension which is proven
to improve MOSFET response. Sensitivity analysis and responsivity are described, in
parallel with theoretical expectations of the plasmonic response in room temperature
conditions. A maximum responsivity of 40 kV/W and corresponding NEP of 10 pW −1

√
Hz

(±10% uncertainty) is demonstrated.
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1. Introduction

1.1. Background

The terahertz (THz) band considered for this thesis is the 0.1 to 10 THz (3 mm to 30 µm)

as seen in Figure 1.1.

Figure 1.1.: Electromagnetic Spectrum. Terahertz region described as 0.1 to 10 THz
(3 mm to 30 µm). Adapted from [1].

Use of the word terahertz is fairly recent, but the most widely accepted research in

which it is first documented is the 1974 paper by J. W. Fleming[21]. There are various

other terms for this region of the electromagnetic spectrum. On the low frequency end,

millimeter wave, sub-millimeter band (referring to the wavelength), gigahertz, and far

infrared are a few common terms. This is due to historical spectral windows used by

scientists, particularly astronomers[22]. This portion of the electromagnetic spectrum

is one of the last remaining regions that has not been fully characterized[15]. Several

reasons for this include its poor atmospheric transmission (Figure 1.3), location between

optical and microwave regimes, and lack of materials for generation and transmission of
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1. Introduction

the radiation. Because of this, technology advancement in this area is much less devel-

oped than typical with regards to the source power and sensitivity of detectors, hence

the term “terahertz gap.” Interestingly, the energy in this band has penetrative prop-

erties through non-metallic materials, making it a viable application for manufacturing,

security, medical imaging, communications and materials/chemicals characterization.

The THz region lies between two common technological domains, the optical regime

(photonics) where experts’ intuition is expressed in terms of wavelength into the far-

infrared, and the microwave (radio-electronics) regime where it is expressed in terms of

frequency down to gigahertz (GHz). Because of its location in the spectrum, theory and

practices from both schools of thought can be employed to utilize THz radiation, but

this also comes with unique limitations. Currently, there is no ideal method to generate

or detect THz waves. Each application picks different source and detection technologies.

Imaging research included, has yet to find an efficient method for detection.

THz imaging has been a foremost driver of THz and could push technology develop-

ment in the near-term to similar capabilities as infrared (IR). Each detection method

however has its disadvantages; size, speed, sensitivity, noise, etc. Due to low sensitivity

and signal levels, most systems employ a raster scanning techniques to form an image of

adequate size. One of the most promising methods to mitigate this and move towards

framing techniques is using silicon CMOS (Complimentary Metal Oxide Semiconductor)

MOSFETs (Metal Oxide Semiconductor Field Effect Transistor). When biased prop-

erly, a MOSFET channel acts as a THz detector. Incident THz radiation disturbs the

electrons in the channel creating a detectable plasma wave. Often these detectors are

paired with an antenna to increase radiation coupling efficiency. Now a pixel is realized

and can be utilized in the same way as digital camera framing arrays.

2



1. Introduction

1.2. Motivation

This thesis outlines the background of THz radiation, theory of detection, current tech-

nologies, and how a silicon CMOS based pixel is designed and tested. The design and

test of an example pixel and chip was completed as part of a Center for Emerging and

Innovative Sciences (CEIS) collaboration between the University of Rochester (UR), the

Rochester Institute of Technology (RIT), and Exelis Geospatial Systems. CEIS is a New

York State (NYSTAR) funded advanced technology center, designed to bring together

companies and university researchers who have common areas of interest[23]. Corporate

sponsored research and development funding is matched by the state in order to promote

collaboration.

The purpose of this THz research group is to develop a prototype focal plane array

(FPA) for use in imaging systems and standoff threat detection applications[24]. CMOS

technology was chosen for its low cost, commercial reliability, compact packaging, and low

noise equivalent power (NEP)[15]. In order to achieve this goal, several design parameters

were varied to optimize detector responsivity. This thesis supports the development and

testing of initial designs for optimized pixels in CMOS, including MOSFET, antenna,

and layout variations and modifications for improved response. Subsequent chip design

will ultimately lead to an ideal FPA design. Testing of the technology is carried out at

the Chester F. Carlson Center for Imaging Science, RIT.

1.3. Terahertz Radiation Properties

THz radiation has unique properties as compared to other portions of the spectrum

which is why it is so exciting to develop. This section outlines its properties to give some

perspective for the subsequent application section of this document.
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1.3.1. Non-Ionizing

THz radiation is non-ionizing, meaning it does not destructively interfere with human

DNA molecules. Radiation that has enough energy to free electrons from atoms or

molecules during collision is considered ionizing. Obviously, this is not ideal for humans

as ionizing radiation damages living tissue including DNA. In extreme doses, this results

in sickness, mutation, and cancers which can lead to death. Radiation with shorter

wavelengths such as some ultraviolet, x-rays, and gamma rays are ionizing, while longer

wavelength radiation including visible, infrared, microwaves, THz, and radio waves are

non-ionizing (Figure 1.1). When THz radiation is compared to x-rays for example, THz

has photon energies which are four orders of magnitude lower which is one of the reasons

why THz imaging is of interest for the partial replacement of x-ray imaging.

1.3.2. Penetration

A primary advantage of THz is that many common materials are transparent or semi-

transparent to its light. This includes some plastics, paper, cardboard, semiconductors,

and human and biological tissues [25]. Imaging applications are ideal because of this,

although further research is needed before the technologies are developed enough to

compete with standardized systems such as x-ray, MRI, etc. THz radiation does not

have quite the same penetrative power as millimeter wave or x-ray radiation although,

which is one of the drawbacks for replacement of current systems. Efforts to combat this

are usually answered with an active source system, vs a passive one. Example images

utilizing this property can be seen in Section 1.4.3
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1.3.3. Resolution

The Rayleigh criterion for minimum resolvable angle of a circular aperture (assuming

that the aperture is large as compared to the wavelength) is:

θ = 1.22
λ

D
[rad] (1.1)

where λ is the wavelength and D is the Diameter of the circular aperture. This translates

to an inverse relationship of resolution with respect to wavelength. Current millimeter

wave scanner systems operate around 30 GHz and provide about 1 mm of spatial res-

olution at distances less than 1 m. By moving into the THz domain, not only is the

resolution improved, but the aperture needed for the system can be made smaller. This

makes the systems more compact, mobile, and covert if needed. The Safe VISITOR

system (described in Section 1.4.3 for example, achieves a 1.5 cm resolution at 8 m with a

0.5 m diameter aperture (0.35 THz) [9, 26, 27]. X-ray systems however have better reso-

lution based on the Raleigh criterion with a much shorter wavelength (higher frequency)

than THz. A tradeoff for x-rays vs t-rays occurs with resolution versus penetration of

the radiation, as well as ionizing energy considerations.

1.3.4. Scattering

THz light scatters less than that of shorter wavelength radiation. The probability of

Rayleigh scattering is inversely proportional to the wavelength as λ4. Lord Rayleigh

derived an expression for the scattered intensity as shown in Figure 1.2.
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Figure 1.2.: Diagram and equations describing Rayleigh scattering. Essentially, light of
different wavelengths (colors) scatters at different angles when coming into contact with
air molecules. This is why the sky looks blue and sunsets look red/orange. Reprinted
from [2].

For a wavelength of 1 mm (0.3 THz), a 1012 reduction in scattering seen as compared

to visible light [25, 28]. Because of this reduction in scattering, a better image can be

obtained.

1.3.5. Safety

Power levels of THz sources are continually climbing, especially with the recent technol-

ogy push in the last few years. Safety and human effects of this newly developed area

need to be studied further. Initially it seems as if THz radiation is completely safe since

it is non-ionizing. This may not be the case however, since the technologies are fairly

new and not yet fully tested against prolonged exposure. Although there have been re-

ports of negative effects due to exposure, such as growth enhancements, wound healing,

and changes in anxiety levels, further studies are needed to determine all of the effects

and resulting limitations in exposure, especially with high power levels. The most recent

investigations suggest that tissue damage is unlikely to occur below levels of 10 mW cm−2

[29].
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1.3.6. Atmospheric Transmission

As previously described, developing technologies for the THz region of the spectrum

proves to be a daunting task. So what are the actual capabilities of such a system should

significant progress be made? Before this question can be answered, see Figure 1.3.

Figure 1.3.: Atmospheric attenuation of the THz spectrum. The boundaries of the region
of interest are annotated. Adapted from [3].

Even if THz source power increases to much higher levels, say for an active commu-

nication system, absorption in the atmosphere is still prohibitive after a certain point.

Armstrong looked at these numbers [4], and the results are telling. By analyzing the

power levels and distances required for a communication system, anything further than

100 meters is near impossible for wavelengths greater than 1 THz, even with a petaWatt

of power. He describes this limitation as a “THz wall”, because no matter how much
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you boost a signal to a receiver, essentially nothing gets through after 100 meters (see

Figure 1.4). This occurs near 1 THz. Other interpretations exist however, and only time

will tell once technologies develop enough to prove or disprove this theory.

Figure 1.4.: The “THz wall”. Calculated for a communications link using fixed gain
antennas an a horizontal line-of-sight path on the ground. Good and bad weather trans-
mitted power are shown for frequencies between 35 GHz and 3 THz. Transmitted power
is shown in decibel-milliwatts, or dBm, which denotes the amount of power required at
the sending side to reach the receive end at the specified distance. Adapted from [4].
Inset: Power conversion chart from decibel-milliwatts to watts.
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1.4. Applications

1.4.1. Astronomy

Astronomers were some of the first scientists to become interested in THz radiation for

a very practical reason. About half of the luminosity and 98% of photons released since

the occurrence of the Big Bang reside in the THz portion of the spectrum, specifically

the interstellar dust that sits 14-140 K below the ambient background of the earth [15,

30]. Because of this and spectral attenuation, ground based systems in the THz will

always have limited utility. This application is one of the most easily employed areas

since the primary limitations of THz radiation are mitigated by putting the sensors in

space. In a space vacuum, all the problems with absorption and transmission nearly

go away. Figure 1.5 shows the spectral content of a star forming cloud. The 30 K

blackbody represents the cloud dust and gas temperatures while the cosmic background

is shown at 2.7 K. At longer wavelengths, the rotation spectrum of heavy molecules

dominates the gas emissions of interest. This is where a THz detector could be used

since the clouds are optically thin. At shorter wavelengths into the infrared, these dust

clouds are optically thick, so one cannot see through them to detect the emission lines of

interest. By using THz spectroscopy in space to look at these emission lines, scientists can

gather information that can answer many unknown questions regarding the formation of

galaxies, stars, and planets. It is also useful for the characterization of the Earth’s upper

atmosphere, to detect and map ozone holes [31].
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Figure 1.5.: Spectral content of a typical star forming cloud in the galaxy. A Jansky is
a measure of spectral flux density, equivalent to: 1 Jy = 10−26 W m−2 Hz−1. Adapted
from [5].

1.4.2. Spectroscopy & Material Identification

Many non-metallic materials have strong absorption lines in the THz which allow for the

detection and investigation their of physical properties. An example spectra for table

sugar is shown in Figure 1.6.
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Figure 1.6.: Transmittance spectrum for table sugar in the THz. Reprinted from [6].

Coupled with the penetrative properties of THz, this opens up many applications

for detection of chemicals and materials not only in terms of differentiation, but in

determining their composition. Detecting pollutants, biological and chemical agents,

and ancient artifact characteristics are some of the many applications.

1.4.3. Security & Defense

Law enforcement, security, and military applications are perhaps the foremost driver of

THz technologies today. Airport security continues to be an ongoing problem due to

increasing travel and the need for global connectivity. A THz security scanner could

passively (with respect to the person) detect chemical and biological agents present on a

passenger’s person or in luggage, alerting security personnel to further investigate. This is

a promising close range application since the radiation does not transmit well past 100 m,

as previously stated in Section 1.3.6. It has the potential to replace current mm-wave
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and x-ray scanner systems as well, and provide a better resolution and detection product

due to its ability to penetrate clothing and non-metallic materials. Digital Barriers, a

UK based company has one of the first passive systems able to prove the utility of such

a device as seen in Figures 1.7 and 1.8.

Figure 1.7.: Example ThruVision system concepts for security screening. ThruVision
systems are active operating in the 0.25 THz wavelength region. Reprinted from [7]
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Figure 1.8.: Example image from ThruVision system. The inset on the left shows an over-
layed THz image and the presence of a handgun under the subject’s clothing. Reprinted
from [7]

Another important application is the screening of packages and mail. Dangerous sub-

stance detection is a high priority for prison systems and government facilities where large

mail volumes make detection difficult. A new solution has been developed using THz

detection, in a collaboration between the Fraunhofer Institute for Physical Measurement

Techniques IPM, and Huber GmbH & Co.. The T-COGNITION system (Figure 1.9)

uses active radiation between 0.1 and 4 THz from fiber-optic lasers and a dry air flood-

ing system to provide a stable environment for detection. It uses a detection algorithm

to perform a spectral analysis in 8 seconds on a single piece of mail [8].
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Figure 1.9.: Example image of T-COGNITION system. Software analysis shows the
presence or absence of identified substances on a visible image. Reprinted from [8].

Additionally, a recent example of a prototype security screening system is the Safe

VISITOR system, Figure 1.10. A German collaboration between the Institute of Pho-

tonic Technology, Supracon AG, and Jena-Optronik GmbH produced the system which

is capable of 10 Hz video and centimeter resolution at <10 m. It uses a circular raster

scan technique to gather multiple samples in order obtain good resolution.
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(a) (b) (c)

Figure 1.10.: Safe VISITOR system operates at 0.35 THz and capable of slow frame-rate
video. Adapted from [9]. (a)Example camera setup. (b)THz image of resolution chart
at 8 m. (c) THz image of person with concealed gun at 8 m.

Along with these novel systems, an increasingly important issue is the privacy impli-

cations of such images. THz images tend to reveal more detail underneath clothing than

the general public would like. This is a tradeoff between security and privacy. The same

concern exists with millimeter-wave systems as well, and software adaptations of the im-

ages have been used to make such security screening systems more ethically acceptable

[8].

1.4.4. Communications

The field of communications and its continually increasing need for more bandwidth will

always push technologies to find new ways of meeting this demand. Channel congestion

in ground based systems is also a problem, so new frequency options would provide some

relief. Typically, device bandwidth is about 10% of the frequency on which it operates

[28]. This means that the higher the operating frequency, the more potential bandwidth

is available. Current indoor and outdoor systems are not meeting bandwidth demand,

and in most cases, wired connections are still used. Operating at THz frequencies has
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the potential to meet this demand in order to move to an ideal target bandwidth of

100 Gbps for a wireless link [32].

Figure 1.11.: Current communications system layout for human spaceflight missions. S
(2-4 GHz), Ku (12-18 GHz), and Ka (26-40 GHz) band systems are the primary operating
bands. Adapted from [10].

Space-based communications is another application for THz communications, as shown

in Figure 1.11. Again, because of the space environment, atmospheric attenuation is not

an issue. Currently, systems have to parse information on-board the spacecraft and

choose what to send over the link. Increased bandwidth of a THz link would allow for

more information to flow between systems. THz systems would also have the advantage

of simplified design compared to current S (2-4 GHz), Ku (12-18 GHz), and Ka (26-40

GHz) band systems [10]. These links have a highly complex design in order to push

the required data over limited channels. THz systems and the inherent physics of the

wavelength would allow for a smaller form factor, which is always attractive to space

applications for the never ending chase of weight savings.
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1.4.5. Medicine

THz technologies have the potential to replace x-ray and CT scan based medical imaging

in many areas. Dental x-rays, detection of skin conditions, cancer, and biological tissue

identification are some of the uses. Figure 1.12 shows a TeraView system image of a

tooth cavity.

Figure 1.12.: Visible and THz image of human tooth using a TeraView system. The
absence of visual features on the tooth surface makes early detection of tooth decay
difficult. X-rays, one of the accepted methods used to detect decay, only reveals the
problem at a relatively late stage, when drilling and filling is the only method available to
halt the decay. If decay can be detected early enough it is possible to reverse the process
without the need for drilling by the use of either fissure sealing or remineralization.
Reprinted from [11].

THz radiation in non-ionizing, meaning it will not destructively interfere with human

tissue (see Section 1.3.1). Also, it can only penetrate a limited distance due to the

strong H20 content in the human body. In-vivo non-invasive blood glucose monitoring

is another interesting use of THz for medicine. Because of unique absorption features, a

THz system could potentially replace pesky finger pricking glucose systems by remotely

sensing the content in blood [33].
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1.4.6. Manufacturing

Manufacturing and quality control are a good fit for THz systems. Using its penetra-

tive properties, a THz imager can detect defects in semiconductors, plastics, or other

manufactured materials that would not be otherwise visible. One example would be for

detecting the thickness of tar applied to roofing shingles. Currently tar thickness is phys-

ically measured after the application process, deeming product runs with an incorrect

thickness as unusable. If the process does not apply enough tar, the product fails. If too

much tar is applied, than the manufacturer is losing profit. By monitoring this thickness

in realtime with THz sensors, the thickness can be adjusted accordingly. This is possible

because of the THz’s unique penetrative properties. (This application was offered by

Traycer Systems, Inc).

1.5. Summary

Using THz radiation as a new regime for imaging and remote sensing has been sought

after for many decades. Recently though, technology breakthroughs such as the decreas-

ing feature size of semiconductor devices, has allowed for first practices of THz concepts.

Unique properties and spectral profiles of THz radiation allows us to realize potential

applications. Security, defense, and communications are the primary technology paths

that are driving this development, but a broad range of applications is what makes the

THz research field full of energy and promise. The remainder of this thesis will focus on

the specific application of THz detection in MOSFETs and efforts to develop an FPA

imaging system applicable to many of the aforementioned applications.
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This section will explain the theory and mathematics aimed at describing THz detection

using the channel region of a MOSFET. First though, some basic concepts must be

understood.

2.1. MOSFET Basics

The concept of the field effect transistor was first patented in 1925 by Julius Lilienfeld. A

MOSFET is a four terminal semiconductor device (source, drain, gate, and base) which

operates in the simplest form as a switch, Figure 2.1. Charge carrier (electrons in our

case) density under the gate is controlled by applying a voltage to the gate contact. This

forms a conductive semiconductor channel (inversion layer) between the source and the

drain. Typically the substrate (or base) is grounded with the source (common-source

mode) and the device is controlled with the three other contacts. The channel length, L,

of these devices were once on the order of a few micro-meters (micron), but improvements

in production technology have scaled this down to tens of nano-meters. The latest Intel

processors for example, are 22 nm which allows for more transistors to be packed on a

chip to provide better performance, latency, and power consumption[34]. The increase

of this transistor density is commonly known as Moore’s Law, which predicts a factor

of 2 increase every two years (this is commonly misquoted as 18 months due to Intel

executive David House referring to effective computer performance gains [35]).
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For an n-channel device (electrons as carriers vs holes) in the off state (no gate voltage),

the source and drain contacts are isolated from each other, and inversely in the on state

(when the gate voltage is above a threshold) the conducting channel forms allowing

current to flow between the source and drain. The electrons enter and exit the channel

at the source and drain contacts [12].

Figure 2.1.: MOSFET diagram. The semiconductor substrate in an n-channel device is
traditionally p-type silicon with the source and drain implants doped n+ silicon. The
insulator layer below the gate is silicon dioxide, and the contacts are made of a conductive
material like polysilicon or silicide. Reprinted from [12].

The gate threshold voltage, VTH is defined as the voltage at which a strong inversion

occurs, therefore forming the conductive channel. In some cases, a drain voltage, VDS

is applied as another biasing parameter. Assuming the gate voltage is above threshold,

VGS > VTH , this produces an asymmetric channel region, as shown in Figure 2.2.
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Figure 2.2.: The channel region of a MOSFET under a pinch off state. The asymmetry
is formed by the presence of a drain bias voltage. Too much drain bias will force the
channel into a pinch off state, and the inversion layer is no longer maintained. Adapted
from [13].

As you travel linearly across the channel from the source to the drain, the channel-

source voltage increases and reaches VDS at the drain terminal. Corresponding to this

voltage increase along the channel, is a decrease in the gate channel bias VGx, where x

represents the position along the channel. At the drain, the gate-channel voltage is equal

to the difference between gate and drain voltage, VGx = VGD = VGS − VDS.

2.1.1. Gradual Channel Approximation

In order to explain the plasmonic detection mechanism, William Schockley’s Gradual

Channel Approximation (GCA) of the MOSFET must first be understood [14, 36]. It

is termed GCA because of the assumption that the voltages vary gradually along the

channel of length, L, from the drain to the source. Vertically they vary quickly from the

gate through the channel to the substrate. This approximation is used in order to model

the I-V characteristics of the MOSFET device. The GCA holds for long channel devices

where the gate length to channel depth ratio is large, i.e. L/h(x) >> 1. However, newer

short channel devices have more complex characteristics, but the approximation is still

useful for modeling and analysis. Figure 2.3 shows an example MOSFET exhibiting the

GCA conditions.
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Figure 2.3.: MOSFET exhibiting GCA conditions. The charge varies gradually along the
channel of length, L, with a strong inversion at the source and a weak inversion at the
drain. This asymmetry is due to the drain bias voltage, VDS. Reprinted from [14].

An important assumption for the GCA is that the current through the base and gate

is approximately zero, iB = iG ≈ 0. Therefore the drain voltage and base voltage as

VDS ≥ 0 and VBS ≤ 0 provide bounds for the validity of the GCA. With the GCA,

the problem reduces to simply finding the current through the channel, iD. The drain

current, iD now has three regions (modes) of operation. They are cutoff, linear, and

saturation mode, as shown in Figure 2.4. Linear mode is also referred to as the ohmic

or triode region. In cutoff, current is not able to flow through the channel, iD = 0. This

is the case when the gate voltage is below threshold (also known as sub-threshold), so

a complete inversion layer is not present, VGS < VTH . In linear mode, the MOSFET

operates like a resistor (hence ohmic mode), and the gate voltage controls the amount of

current flowing through the channel as:

iD = µeCox
W

L

(
(VG − VTH)VDS −

V 2
DS

2

)
(2.1)

where µe is the electron mobility, Cox is the capacitance of the gate oxide per unit area,

W is the gate width, and L is the gate length. In saturation (also active mode), a strong
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inversion takes place and completely forms the channel. Current flow now reaches a

limit, and no longer depends on VDS. The gate voltage is now the primary control for

current flow.

Figure 2.4.: The MOSFET Family of Curves. This plot of drain current vs drain voltage
describes the MOSFETs operating characteristics. The gate voltage for each curve is
annotated. The dashed line represents the saturation voltage, where VGS − VTH ≤ VDS.
Example data is from one of the THz test MOSFETs to be described in Section 4.

2.1.2. Conductance & Transconductance

Two important parameters of a MOSFET’s operation are the conductance and the

transconductance. These are used to characterize operation, and also to track changes

in operation over time. The conductance, gd (the reciprocal of resistance) is the ratio of
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the change in drain current to change in drain voltage for a fixed gate voltage:

gd =
δiD
δVDS

∣∣∣∣
VGS

(2.2)

gd,triode = µeCox
W

L
(VGS − VTH − VDS) (2.3)

gd,sat = 0 (2.4)

An example of conductance is shown in Figure 2.5 for the T-5 bowtie MOSFET described

in Section 4.

Figure 2.5.: The Conductance Curve. Represents the change in iD vs the change in VDS.
VGS is fixed at 1 V. VTH for this device is ≈ 0.5 V. Example data from test MOSFETs.

gd,triode is the conductance in the triode regime and approaches zero in the saturation

regime, represented by gd,sat. In triode, the drain current changes rapidly with any

change in VDS. In saturation, there is almost no change. Since the channel resistance
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is the reciprocal of conductance, it is easy to see that in saturation a nominal channel

resistance is achieved, but in triode this inversely proportional to VDS.

Similar to conductance, the transconductance, gm is the ratio of the change in drain

current to the change in gate voltage for a fixed drain voltage:

gm =
δiD
δVG

∣∣∣∣
VDS

(2.5)

gm,subthreshold = 0 (2.6)

gm,triode = µeCox
W

L
VDS (2.7)

gm,sat = µeCox
W

L
(VGS − VTH) (2.8)

Figure 2.6 shows an example of transconductance from the test MOSFETs decribed in

Section 4. where gm has three regimes. Below the threshold of the device, VTH , gm is

zero, but swiftly increases in the triode regime. As the channel begins to saturate, an

exponential like decrease appears represented by gm,sat.

Conductance and transconductance are both given in units of inverse ohms, or some-

times mhos or siemens:

1 f = 1 S = 1
A

V
(2.9)
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Figure 2.6.: The Transconductance Curve. Represents the change in iD vs the change in
VGS. VDS is fixed at 0.1 V. Same test MOSFET as Figure 2.5.
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2.2. Plasmonic Detection Mechanism

The following analysis of plasmonic detection will follow the theory initially provided by

Dyakonov and Shur in the early 1990s [37, 38]. In the MOSFET channel under proper

biasing conditions, the electron system, termed electron fluid, can act as a resonator for

THz radiation in the form of plasmon waves as seen in Figure 2.7.

Figure 2.7.: MOSFET diagram of signal detection. Under proper biasing, incoming THz
radiation produces an AC signal between the gate and source region. This is rectified
and detected as a DC voltage change between the source and the drain. Channel length,
L, affects the response frequency and determines whether a resonant or non-resonant
detection occurs. Adapted from [15].

The current flow through the MOSFET is then disturbed from these plasmon waves

and can be used to quantize the incoming radiation. Because of Dyakonov and Shur’s

analogy to shallow water waves, hydrodynamic equations for fluid can be used to describe

the motion [39]. Electron concentration in the channel is described by:

nc =
CU

q
(2.10)

where nc is the electron concentration in the channel, C is the gate-channel capacitance
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per unit area, U is the gate-channel voltage, and q is the elementary charge. The Euler

equation of motion for 2D electron fluid is given by [38]:

δv

δt
+ v

δv

δx
+

q

m

δU

δx
+
v

τr
= 0 (2.11)

where δU/δx is the longitudinal electric field in the channel, v(x, t) is the local electron

velocity, q is the elementary charge of an electron, and τr is the electron momentum

relaxation time. Equation 2.11 is solved in conjunction with the continuity equation

(local energy conservation) below with the gradual channel approximation from Section

2.1.1:
δU

δt
+

δ

δx
(Uv) = 0 (2.12)

where Equation 2.10 provides a replacement for the electron concentration nc with the

gate-channel voltage U . An expression for the photoinduced response is then derived

[40, 41]. This is dependent however, on whether the MOSFET is operating in a resonant

or non-resonant regime. First, the following parameters and values are defined:

The electron momentum relaxation time represents the average free time between ionic

collisions, τr as [19]:

τr =
µnm

∗
em0

q
[s] (2.13)

where µn[ cm
2

V s
] is the electron mobility in the channel, m∗e = 0.19 is the electron effective

mass, m0 = 9.11E − 31[kg] is the electron rest mass, and q = 1.6E − 19[coul] is the

elementary charge of an electron. Values of µn can range from 250-1400[ cm
2

V s
] for silicon,

but a typical value is 500.
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The plasmon wave velocity sp is defined through [16, 19]:

s0 =

√
ηkBT

m∗em0

[
m

s

]
(2.14)

s1 =
qU0

ηkBT
(2.15)

sp =
√
s20(1 + e−s1)ln(1 + es1)

[
m

s

]
(2.16)

where η = 1.5 is the ideality factor, kB = 1.38E − 23[ J
K

] is the Boltzmann constant,

T = 300[K] is the temperature, U0 = VGS − VTH [V ] is the voltage swing between VGS,

the gate voltage, and VTH , the threshold voltage.

The conductivity of the channel, σc is driven by τr through[39]:

σc =
ncτrq

2

m∗em0

[S] (2.17)

2.2.1. Resonant Detection

A sufficiently short channel length MOSFET will act as a resonant detector with the

fundamental plasmon wave frequency, ω0, and eigen plasmon wave frequencies, ωnn are

given as:

ω0 =
π

2L

√
q(VGS − VTH)

m∗e
=
πsp
2L

[Hz] (2.18)

ωn = ω0(1 + 2n) n = 1, 2, 3, ... (2.19)

Resonant detection is realized when the resonance quality factor ω0τr > 1. In this regime,

the channel length is short enough that a standing plasmon wave is formed in the channel

promoting signal amplification. The wave propagates between the source and the drain
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regions being reflected back and forth. For longer channel length devices, the wave decays

before it reaches the drain side and the AC induced signal only exists near the source

[39].

A resonant device can have a high responsivity due to increase signal amplification in

the channel. Also, the response is narrowband, so response to particular frequencies can

be tuned. Unfortunately, parameters for resonant response in modern silicon MOSFETs

is driven by the short gate length and high mobility. The gate length is manufacturable,

but electron mobilities are too low to support this resonant response at room temperature

conditions. Other semiconductor applications using high electron mobility transistors

(HEMT, HFET, MODFET) are more suited for resonant detection [40].

2.2.2. Non-Resonant Detection

When the resonance quality factor ω0τr � 1, a non-resonant detector response is realized.

Here the plasmon wave is dampened before reaching the drain side of the MOSFET

channel (overdamped), resulting in a broadband response of lower responsivity. This is

the case in our application with a larger gate length, L = 350 nm. Several mathematical

applications of this case predict voltage response ([15–17, 39–42]) and a generalized

equation for the non-resonant case incorporating below and above threshold response is

provided in [16, 39].

The resulting photoinduced voltage, ∆U is determined through:

Q =
L

sp

√
ωthz
2τr

(2.20)

∆U =
qU2

a

4m∗em0s2p

[
1

1 + κe−s1
− 1[

1 + κe−s1
]2[
sinh2(Q) + cos2(Q)

]] [V ] (2.21)

where κ is a dimensionless parameter related to the gate leakage current (κ � 1), and
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Q is a simplification term given by:

κ =
j0L

2m∗em0q

2Coxτrη2k2BT
2

(2.22)

where j0 is the gate leakage current density and Cox is the gate-oxide capacitance per

unit area.

2.2.3. Theoretical Calculation

Using Equation 2.21 and supporting parameters, a theoretical calculation for reponse

can be obtained. The unknown variable in this calculation however, is the AC-induced

signal on the gate, Ua, which is coupled via the antenna. This must be interpreted and

estimated.

First, the following parameters are defined:

Symbol Value Units Description

η 1.5 Unitless Ideality Factor

κ 0.01 Unitless Dimensionless Gate Leakage Parameter

kB 1.38 ∗ 10−23 J K−1 Boltzmann Constant

m∗e 0.19 Unitless Electron Effective Mass in Silicon

m0 9.11 ∗ 10−31 kg Electron Rest Mass

q 1.62 ∗ 10−19 C Elementary Charge

T 300 K Temperature

µn 500 cm2 V−1 s−1 Electron Mobility

Ua 60 mV AC Photoinduced Voltage

VGS 0.5 V MOSFET Gate-Source Voltage

VTH 0.485 V MOSFET Threshold Voltage
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Next, the following results are calculated using Equations 2.13 - 2.22:

Symbol Value Units Description

sp 2.14 ∗ 105 m s−1 Plasmon Wave Velocity

τr 5.4 ∗ 10−14 s Electron Momentum Relaxation Time

U0 −0.015 V Gate Voltage Swing (VGS − VTH)

ω0 0.962 THz Fundamental Plasmon Wave Frequency

Using a Ua of 60 mV, a theoretical response 4U = 59.1 mV is realized. This agrees

with the T-1 results from Section 4. The method of radiation coupling through the

antenna, coupling efficiency, and incident power on the effective aperture of the antenna

are what is missing from these calculations. The front end portion of the detection chain

is what is missing from the aforementioned theory as well. This also does not account

for any of the source region extensions outlined in Section 3.

2.2.4. Application and Enhancement

Several methods exist for enhancement of the rectified signal in experimental applica-

tions. An antenna is commonly used to enhance response to the frequency of operation,

as well as modified biasing schemes. Developing theory for these more complicated config-

urations is ongoing [43–45], but tends to be application specific. A simplified explanation

for the approach in this section is that the incoming radiation of frequency ωthz hits the

MOSFET channel and induces a plasmonic oscillation, and corresponding AC voltage,

Ua in the gate. Given that the biasing and dimensional parameters are constructive, the

AC voltage wave is rectified through the MOSFET to the drain as a DC photoresponse,

∆U . This is illustrated in Figure 2.8.
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Figure 2.8.: Theoretical operation of MOSFET for THz detection. Ua is the photoin-
duced AC voltage, U0 is the DC gate voltage bias from threshold, and dU is the rectified
DC photoresponse voltage.

Figure 2.9.: Experimental application of MOSFET for THz detection. The antenna in-
tends to enhance response, with the bias applied through VGS and iD. Response is
measured through VDS.

The MOSFET parameters must provide an asymmetry between the source and the

drain in order to promote this rectification. This is achieved through physical construc-

tion of the MOSFET, circuit configurations, an antenna, or biasing schemes [15, 19, 39].

The asymmetry in the described test chip (Section 3) is provided by the antenna connec-
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tions between the gate and source (Figure 2.9), and enhanced with an optimal drain bias

current, iD. This represents the approach taken for the experimental process described

in Section 3.4 and corresponding results shown in Section 4. First though, the test chip

and pixel design is described in Section 3.2.
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3.1. Research Collaborators

RIT, UR, and Exelis Geospatial Systems partnered to develop the prototype THz FPA

and imaging system as previously described [24]. Current systems mainly consist of bulky

technology, including large pulsed laser systems and primarily laboratory based setups.

A silicon CMOS based technology was chosen with the goal of developing a practical

imaging system. The THz FPA technology being tested is uncooled and employs the

direct overdamped, plasmonic detection described in Chapter 2. The silicon CMOS

MOSFETs are each coupled to an individual micro-antenna. The focus of this section is

characterization of individual test transistors which will support future FPA pixel design.

Testing of the technology is carried out at the Chester F. Carlson Center for Imaging

Science, RIT.

3.2. Chip & Pixel Description

The chip used is designed and fabricated in a 0.35 µm silicon CMOS process. The foundry

vendor utilized is the Taiwan Semiconductor Manufacturing Company Limited (TSMC)

and the fabrication house is MOSIS. The chips are then sent to Malaysia for packaging.

This fabrication process was chosen in order to match the frequency response of the

detection MOSFET with the source frequencies of interest (see Section 2). Although
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limited source options are currently available to the research group, the 188 GHz Gunn

diode matches well with expected response frequencies. Figure 3.1 shows this response

vs. frequency relationship for a 130 nm process.

Figure 3.1.: Responsivity of THz MOSFET vs. frequency. The triangles show the mea-
sured points for a MOSFET with a gate length of L = 130 nm and coupled with a bowtie
style antenna. Notice the peak response near 300 GHz. For a larger MOSFET such as
the 350 nm under test, the response will be lower [16]. The inset shows a diagram of the
MOSFET and antenna for reference. Adapted from [17].

On the chip are four test imager arrays and five test transistors. These ‘test’ transis-

tors are connected directly to outputs for characterization without clocking electronics.

Present work is focused on characterizing the response from these five test transistors.

Figure 3.2 shows a micrograph of the test chip with the test transistors located on the

bottom edge.
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(a) (b)

Figure 3.2.: Test Chip 1 (a) 40-pin DIP package for test chip. Individual pins allow
selection of test transistors without clocking electronics. (b) Micrograph of the test chip.
The five test transistors on the bottom edge are being characterized in this work.
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Figure 3.3.: GDS file snapshot of T-1 pixel design. Bowtie antenna has dimensions of
70 µm x 6 µm with a 2 µm gap.
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Figure 3.3 shows a snapshot of the pixel design. The pixel area is 120 µm square. The

antenna is connected to the gate on one side and the source on the other. The guard rail

surrounding the detection MOSFET is connected to ground and isolates the detection

region. The shield layer is grounded as well, and covers the switching MOSFET for the

gate connection. The connections out to the pads are covered by the shield to isolate

coupling to the pixel region. Two versions of the chip were designed to study antenna

variations. The test transistors are identical with the variations of the antennas being

either bowtie or spirals as shown in Figures 3.4 and 3.5. The five test transistors on each

chip all have the same channel dimensions of 0.35 µm x 2 µm.

(a) (b)

Figure 3.4.: GDS snapshot of a test transistor with bowtie antenna. (a) Full pixel and
antenna 5.7 µm x 68.4 µm, 2 µm Gap). (b) Blowup view of the design with the guard rail
around the edge. The orange (lower) shaded area represents the metal shield layer, with
the antenna and detection MOSFET located in the top half of the image.
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(a) (b)

Figure 3.5.: GDS snapshot of test transistor with spiral antenna. (a) Full pixel and
antenna with a 72 µm diameter. (b) Blowup view of the pixel. These pixels are identical
to the bowtie antenna pixels, the only difference being the antenna.

The only difference between the five test transistors is the size and shape of the MOS-

FET source region. The source region was varied for the purpose of investigating the

effects of adding a small source-degeneration resistance on the overall responsivity. The

added resistance was varied in 10 Ω increments from 0 Ω (T-1) to 40 Ω (T-5). This resis-

tance is implemented through a source extension with length Ls as shown in Figure 3.6.

Figure 3.6.: MOSFET with extended source region. Ls represents the length of extension
of the source from the gate.

The source extension is varied in 0.5 µm increments from 0 µm to 2 µm. This creates
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an effect analogous to impedance matching for the incoming signal (further explanation

in Section 4). The difference in the source drain extension as implemented on the chip

is shown in Figure 3.7.

(a) T-1, 0 µm Ext
(b) T-2, 0.5 µm Ext (c) T-3, 1.0 µm Ext (d) T-4, 1.5 µm Ext (e) T-5, 2.0 µm Ext

Figure 3.7.: The five bowtie test MOSFETs. The only difference in the five test tran-
sistors (T-1:5) is the source region extension which varies from 0 µm - 2 µm. The T-1
transistor has the shortest extension while the T-5 transistor has the longest extension.
This notation corresponds to the discussion in the results Section 4.

3.3. Enclosure and Fanout Board Configuration

Bias and measurement signals for the chip are fed through a fanout board as shown in

Figure 3.8. A 3.3 V regulator provides power for the chip and switching MOSFETs, while

direct connections to the gate, drain, and source provide biasing and measurements.

The fanout board is mounted to the inside of the enclosure via standoff posts and

nylon hardware to isolate the board from the enclosure. The enclosure is made out of

aluminum and the removable cover has a conductive seal which creates a full Faraday

cage. A second removable cover was fabricated to mount over the detector aperture and

has a high resistivity silicon window attached. The silicon window prevents any visible

light from entering the enclosure during test. These two covers are shown in Figure 3.9.
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(a) (b)

Figure 3.8.: The test chip is accessed through a fanout board. (a) Front view of the
fanout board including the chip mounted in socket. (b) 9 V battery connections, feed
through capacitors, and a 3.3 V regulator to provide power for the chip. Gate, Drain,
and Source leads are fed directly to feedthrough capacitors on the enclosure.

Figure 3.9.: Enclosure Front View. A removable silicon windows and front cover provide
easy access to the fanout board and chip inside. A conductive seal creates a Faraday
cage around the detector.
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Because the chip substrate is made of silicon (the same material used in visible CCDs,

cell-phone cameras, etc), it also responds to visible light. It is important to assure that

any response being measured is from the THz radiation only and not other wavebands.

Four feed-through capacitors mounted through the rear of the enclosure provide connec-

tions for incoming signals from two TwinAx low noise shielded twisted pair cables. One

cable connects to the fanout board gate and the other connects to the drain. The source

connection is grounded which is used as the reference ground for the gate and drain

signals. An external power switch allows the internal 9 V battery to be disconnected

without removing the cover. A 1/4-20 threaded hole in the center of the rear enclosure

panel allows for various mounting options including a rotation stage aligned the detector

center axis. Also mounted to the rear of the enclosure is a banana jack. This is connected

to the enclosure itself for use as a ground (independent of the reference ground used for

the signal cables) in noise rejection configurations. This is most commonly connected to

the measurement equipment ground to prevent RF coupling.

Figure 3.10.: Enclosure Back View. The rotation stage is centered at the detector center-
axis for rotational purposes. The switch controls 9 V power to the board.
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Figure 3.11.: Enclosure Internal View. Standoffs and nylon washers mount the board
approximately 1” from the back of the enclosure.

3.4. Experiment Description

The transistors are biased using a Keithley 2602 Source Measurement Unit (SMU) which

connects to the test enclosure via low noise shielded twisted pair cables. The enclosure

is mounted on XYZ and rotation stages for alignment purposes. The SMU is controlled

via a MATLAB serial interface for applying bias sweeps and relaying data. A high speed

shutter in front of the detector enclosure is controlled through digital I/O by the SMU. In

the simplest form, the detector is biased by the SMU, and measurements are taken with

the shutter open and closed to determine response. Several biasing schemes are used to

test the MOSFETs. Table 3.1 shows a matrix of possible biasing schemes performed on

each MOSFET. The radiation source is a ≈50 mW, 188 GHz Gunn diode from Virginia

Diodes. An example of the test setup is shown in Figure 3.12.
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Table 3.1.: SMU biasing schemes. Source/measure denote whether the SMU is provid-
ing signal or measuring signal. Voltages are either fixed or sweeped from 0 - 3.3 V. A
measurement occurs for each increment of a given sweep. For each measurement, the
SMU can perform a specified number (typically 100) of sub-measurements at an integra-
tion rate (NPLC) for a given static bias condition. Test 3 and 4 produced the strongest
detection signal and are described in the previous theory section.

VGS VDS iD
Test 1 Source Source Measure

Sweep Fixed
Test 2 Source Source Measure

Fixed Sweep
Test 3 Source Measure Source

Sweep Fixed
Test 4 Source Measure Source

Fixed Sweep

Figure 3.12.: Experimental test setup for detector characterization and beam profiling.
The enclosure is translated via XYZ and rotation stages. The SMU is commanded via
MATLAB serial interface for bias conditions, shutter position, and data transfer.

Typical bias conditions as in Table 3.1 Test 3 include providing a DC voltage to
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the gate-source, VGS, near the threshold region, and a drain bias current, iD. The

photoresponse voltage 4U is then measured as a difference between the DC drain-source

voltage, VDS with the shutter open and closed, as shown in Figure 2.9.

3.5. Terahertz Signal Data Acquisition

This section explains a typical data acquisition process for a photoinduced response.

First, the transconductance of the MOSFET is taken to ensure proper operation and

repeatability (seen in Figure 4.2). For a given sweep, the SMU can source a range of

specified MOSFET parameters between ±3.3 V based on the chip circuitry. A gate

voltage, VGS is applied, along with a drain bias current, iD. The response is measured

as the drain source voltage, VDS.

For each test, the following sequence is used to obtain the desired measurements:

1. Transconductance test prior to measurements

2. Enable the radiation source

3. Close the shutter

4. Enable SMU sources

5. Take X number of measurements: VGS, VDS, iD

6. Open the shutter

7. Take X number of measurements: VGS, VDS, iD

8. Close the shutter, turn off sources

9. Increment to next source voltage and repeat

All of these tests use an NPLC (Number Power Line Cycles) integration rate setting of

0.1. Since we are on 60 Hz power, this works out to a measurement frequency of 60/0.1 =
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600 Hz or intervals of 1.7ms. Once the MOSFET is biased, there is a 3 second delay for

the circuit to settle, and then measurement begins. For each step in the VGS voltage

sweep, 100 samples are taken in succession with the shutter closed first, and then the

shutter open. An example of the raw voltage measurements with respect to time are

shown in Figure 3.13. Each pair of measurements corresponds to a gate voltage. Each

measurement set has 100 samples taken at 600 Hz. The data shown in Figures 3.13 -

3.17 are from a response sweep of the T-5 bowtie MOSFET with iD =0.15 µA.

Figure 3.13.: T-5 bowtie example data. Raw voltage measurements. VDS Measurements
vs. Time

The averages of the 100 samples for the shutter closed and open are shown in Fig-

ures 3.14 and 3.15.
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Figure 3.14.: T-5 bowtie example data. Shutter closed: VDS and iD.

Figure 3.15.: T-5 bowtie example data. Shutter Open: VDS and iD.
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The difference of the shutter open and closed measurements are plotted with respect

to gate voltage to see the response as seen in Figure 3.16. Notice how the distribution

changes near the response threshold. The difference is a simple subtraction of the closed

and open measurements. Specifically, the i-th element of the shutter open vector for that

measurement set is subtracted from the corresponding i-th element of the shutter closed

vector. So the 100 samples for closed and open are lined up and subtracted with the

assumption that the averaging will reduce the noise. Ideally, a correlated double sampling

(CDS) approach would be taken to reduce the noise further, but is too complicated to

implement with this test setup. Therefore the noise in this data is uncorrelated and

includes all of the system noise. The average of the difference data from Figure 3.16 is

shown in Figure 3.17.

Figure 3.16.: T-5 bowtie example data. The signal 4U vs VGS(100 measurements per
step).

49



3. Fabricated Test Chip Design & Evaluation

Figure 3.17.: T-5 bowtie example data. The average signal 4U and noise as σ

As seen in Figure 3.16, the gate voltage range has been adjusted to catch the signal

response curve. These ranges are different for each set of bias values for each MOSFET.

This sweep takes approximately 2 minutes to run from sourcing to data reduction. Keep-

ing enough samples for proper noise analysis and signal shape resolution is important,

but large amounts of data transferred over a serial connection makes this troublesome at

some point. Samples near this acquisition rate, delay setting, and interval are close to

ideal for most of the data presented. For example though, in Figure 3.16, the sampling

rate is actually resolving the signal voltage ramp near 0.47 VGS. The signal level has not

settled yet in the detection circuit before sampling begins. This is adding to the noise

of the signal measurement, and can be easily mitigated by adding a small delay between

measurement sets.
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Results described in this section are taken with the five test MOSFETs with the bowtie

antennas (T-1 through T-5), unless otherwise described as a spiral antenna configuration.

The spiral antenna MOSFETs did not produce nearly as significant of a response. This

is possibly due to the smaller gap between the antenna arms in the spiral configuration.

That is, the THz radiation ‘sees’ this as a contiguous metal plate instead of an antenna.

4.1. MOSFET Characterization

4.1.1. Transconductance

Before each test event, the proper operation and connection of the transistors is verified

via a transconductance curve. For a more in-depth discussion of transconductance refer

to Section 2. Figure 4.1 shows the transconductance curves for the bowtie antenna

MOSFETs T-1 and T-5.
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Figure 4.1.: T-1 Transconductance Curve.

Figure 4.2.: T-5 Transconductance Curve.
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4.1.2. Channel Conductance & Resistance

Another characteristic that is monitored during testing is the channel resistance of the

MOSFETs with as it corresponds to VDS and VGS. In Figures 4.3 and 4.4, the T-

5 transistor resistance is characterized. This is determined through measurement by

Ωchannel = ∆VDS/∆iD, or also by taking the reciprocal of the conductance (i.e. Fig-

ure 4.5). Note that under incident THz radiation the resistance of the channel is chang-

ing due to the changing VDS. The threshold of this device is near 0.5 V, which results

in a resistance of about 10 MΩ. This will become more important as an array imaging

system is realized if the decision is made to design a similar current source on chip for

biasing.

Figure 4.3.: T-5 Channel Resistance. The resistance of the channel as a function of drain
voltage. Each series represents a different gate voltage bias.
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Figure 4.4.: T-5 Channel Resistance. The median resistance as a function of gate voltage.

4.1.3. Thermal Noise

The method used for collecting data consists of various sources of noise since measure-

ments are taken at DC versus using a lock-in technique. A significant component at room

temperature to consider is the thermal noise of the MOSFET. The thermal noise of the

MOSFET can be estimated as a homogenous resistor when VDS ≈ 0. By picking a small

VDS, we can ensure the MOSFET is in the linear region where this approximation will

hold. As VDS increases, the resistivity of the channel changes as a function of distance

between the source and the drain. This is due to the asymmetry of the channel due to

the bias voltage (refer to Figure 2.2). This thermal noise can be approximated as the

Johnson noise of a equivalent resistor:

iD,Therm =

√
4kBT4f

r0
=
√

4kBTg04f (A) (4.1)
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where kB = 1.38 ∗ 10−23 is Boltzmann’s constant in J K−1, T is the temperature in K,

4f is the bandwidth of the measurement in Hz, r0 is the equivalent resistance of the

source-drain channel in Ω, and g0 = 1
r0

is the conductance of the source-drain channel in

S.

A biasing point is selected in order for the MOSFET to be in the linear region where

our noise analysis will occur. Figure 2.4 shows this linear region. A gate voltage, VGS =

0.5 V is selected as it is near where we expect to see THz returns. A drain bias voltage,

VDS = 25 mV is selected since it is close to zero to uphold our resistor comparison, and

is in the linear region of the FET. By plotting a line to fit the I-V curve, we can reduce

the conductance of the source-drain channel, g0 from the slope. Figure 4.5 shows this

conductance as a function of VDS, along with its resistance counterpart, r0, in Figure 4.6.

Noted on the resistance graph is the point selected (25 mV VDS) for this data comparison.

The equivalent resistance at these bias parameters is ≈ 366 kΩ.
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Figure 4.5.: T-5 Conductance, g0 is calculated from the slope of the I-V curve from
Figure 2.4.

Figure 4.6.: T-5 Resistance, r0 vs VDS. Point of interest is noted.
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Using these values, the thermal noise of the channel as related to Johnson noise is

calculated through Equation (1) as follows:

iD,Therm =
√

4kBTg04f

=

√
(4)(1.38E − 23)(300)(2.731E − 6)(

.01

60
)

=17 pA

where the 4f = .01
60

= 1.7 ∗ 10−4 Hz comes from the NPLC integration setting on

the SMU in terms of power line cycles, in other words, the integration aperture for each

measurement is a function of the number of power line cycles, in this case, NPLC = 0.01

of 60 Hz.

Next, in order to verify this calculation, a resistor of similar value to the MOSFET

channel, 225 kΩ, is wired in place of the drain connections inside of the enclosure. This

is shown in Figure 4.7.

Figure 4.7.: Image of resistor wired on source-drain terminals inside enclosure.

By comparing the MOSFET with an actual resistor, uncertainties in the measurement
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system and connections can be eliminated. This also acts as a sanity check for comparing

calculated with measured values.

A current measurement is performed at the specified bias point of VGS = 0.5 V, VDS =

25 mV, with the MOSFET (Figure 4.8)and with the resistor in its place (Figure 4.9).

The measurements performed are exactly the same, and occur in the same conditions,

with the enclosure sealed and the silicon window in place. Ten measurement sets are

taken in each case.

Figure 4.8.: MOSFET measurements for thermal noise. Current vs time.
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Figure 4.9.: 225 kΩ resistor measurements for thermal noise. Current vs time.

The cyan is a single measurement series, where the royal blue is an average of the ten

runs together. Approximately a
√
N improvement is seen due to the signal averaging.

The maximum and minimum are shown from all of the 10 runs at each measurement

point.

Since the 60 Hz noise is so dominant in the signal (Figures 4.8 and 4.10), we remove it

from the signal via fourier math (i.e. frequency analysis), and calculate the RMS noise

of the signal as shown in Figure 4.11.
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Figure 4.10.: Power spectrum of MOSFET signal from Figure 4.8.

Figure 4.11.: Signal from Figure 4.8 w/o 60 Hz. Measurements agree with with calculated
17 pA Johnson noise.
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The RMS noise measured is 17 pA, which matches the original calculation of Johnson

noise. This is affirming since the most of the noise in the signal is a result of thermal

noise and not other large factors other than the 60 Hz power noise. The 60 Hz power

noise is extremely difficult to eliminate since all of the measurement equipment runs

at that frequency. Efforts to reduce this include using a uninterrupted power supply

(UPS) along with many different grounding schemes and measures. These procedures

are discussed further in Appendix A.1.1.

4.1.4. Random Telegraph Signal Noise

Random telegraph signal (RTS) noise, commonly referred to as popcorn noise or burst

noise, is characterized by random fluctuations in time of voltage (or current) to two or

more discrete levels [46, 47]. The voltage versus time waveform has the appearance of

square waves with random lengths of time. In MOSFETs, this is typically caused by

metal contaminants which precipitate during the foundry processing into the channel

region beneath the gate of the MOSFET[47, 48].

Certain chips that were tested exhibited these random DC offset shifts due to manu-

facturing defects in the silicon substrate. Some chips/pixels exhibit a more severe case of

RTS noise than others, and some had none at all. RTS noise adds a tremendous amount

of low frequency noise into signal measurements, and most of the time pixels that exhibit

this are deemed inoperable or bad. The T-1 through T-5 bowtie MOSFETs character-

ized are on a chip that did not exhibit a significant amount of RTS noise, however it is

important to note when producing an imaging array since some pixels will have it, and

it is difficult to mitigate.

Figure 4.12 shows examples of RTS noise. The data are taken while ‘sitting’ on a

biased pixel and reading the drain voltage. No THz energy or other radiation is present.
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Figures 4.12(a) and 4.12(b) show a voltage time signal and it’s corresponding Linear

Spectral Density (LSD) in frequency space, while Figures 4.12(c) and 4.12(d) show a

normal pixel.

(a) RTS Pixel: VDS vs. Time (b) RTS Pixel: LSD V√
Hz

(c) Normal Pixel: VDS vs. Time (d) Normal Pixel: LSD V√
Hz

Figure 4.12.: RTS Noise Example. (a) and (c) show the voltage time signal and (b) and
(d) show the linear spectral density for a normal vs a bad RTS pixel. Notice in (a) the
random DC offset shift around two different voltage means. This is an example of RTS
noise, whereas in (c), these shifts are not present. An increase of ≈ 4 mV RMS of noise
is added to the signal due to RTS.
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4.2. Gunn Diode Source Characterization

The Gunn diode was originally manufactured by Virginia Diodes [49] back in the 1990s

for a university research project. It has a 95 Ghz source with a doubling multiplier to

188 GHz. The source is powered using a single 10V source which connects via a BNC.

The original power specification for the 188 GHz configuration is 56 mW. Figure 4.13

shows an image of the Gunn diode.

Figure 4.13.: VDI 188 GHz Gunn diode.

4.2.1. Power Measurements

The power of the 188 GHz Gunn diode was measured using two different detectors and

compared with original specifications to arrive at an estimated total power of 55 mW.

A Pacific Millimeter GaAs Diode (Model: GD) with a conical horn antenna, and a

Gentec pyroelectric detector (Model: QS-5 THz-BL) were used for measurements and a

Velmex Bi-Slide motorized stage was used for changing the distance between the source

and detector. Neither of these detectors are calibrated for absolute response at 188 GHz
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(relative response), but using the calibration curves and procedures recommended by the

manufacturers, an integrated source power of 55 mW was derived. This is in agreement

with the Virginia Diodes specification of 56 mW.

4.2.1.1. GaAs Diode Measurements

The Gunn diode was mounted on the Velmex stages and aligned with the GaAs diode

detector on an optics table. A MATLAB script commands the stages to move away

from the detector at specified increments, and the voltage is read into MATLAB via a

TDS-200 digital oscilliscope. The result of these measurements in shown in Figure 4.14.

Figure 4.14.: Gunn diode power measurements using GaAs diode detector. The 1/R2 fit
line follows the measurements precisely. The minor oscillations in the measured voltage
are due to phasing reflections between the transmit and receive antennas.

The 1/R2 fit line follows the measurements precisely as expected. This allows us to use
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the Friis transmission equation (see Equation 4.8) [50]. This was derived in 1945 by Bell

Labs worker Harald Friis in order to calculate the ratio of power between transmit and

receive antennas under ideal conditions. Assumptions include that the antennas are in the

far field, are unobstructed, a single wavelength is present, and they are correctly aligned

for polarization. Since we have a measured receive power, the equation can calculate the

transmit power based on known system specifications. The horn antennas used for the

transmit and receive sides have different sized circular apertures and therefore different

gains. The aperture efficiency of the antennas are assumed to be the same, and have

been reduced from the specifications. The following specifications are identified:

Description Symbol Value

Aperture efficiency eA 0.465

Diameter Transmit Antenna dt 8.33 mm

Diameter Receive Antenna dr 11 mm

Effective Area of Receive Antenna Ar,eff 0.422 cm2

Wavelength of Radiation λ 1.5 mm

GaAs Detector Sensitivity @ −20 dBm Sdetector 400 mV/mW

GaAs Detector Measured Voltage Vmeasured – V

Power at Transmit Side Pt – mW

Power at Receive Side Pr – mW

Distance Between Antennas r – cm
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The gain of the antennas can be calculated through:

Gt = eA

[
πdt
λ

]2
=141.534 (4.2)

=21.5 dB (4.3)

Gr = eA

[
πdr
λ

]2
=246.806 (4.4)

=23.9 dB (4.5)

The receive power calculated using the measured voltage from the GaAs detector for

a given distance is found through the following:

Pr(r) =
3200

750

[
Vmeasured(r)

Sdetector

]
(4.6)

The 3200/750 factor comes from the chart, Figure 4.15. The chart is for a 20 GHz detec-

tor, but the relationship translates to our 200 GHz detector as well. This multiplication

factor considers temperature and signal level to adjust sensitivity. The manufacturer

gives the sensitivity specification, Sdetector at an incident power level of −20 dBm so this

must be translated to the appropriate curve on the chart.
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Figure 4.15.: Response Curves for 20 GHz Detector. The 200 GHz detector is approxi-
mately 8 times less sensitive than the 20 GHz detector the chart is spec’d for. This factor
of 8 was provided by Pacific MM support.

The effective area of the receive antenna is calculated through:

Ar,eff =
λ2Gr

4π
= 0.442 cm2 (4.7)
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Lastly the total power applied to the transmitting antenna using the Friis equations is:

Pt(r) =
Pr(r)

GtGr[
λ

4πr
]2

(4.8)

Pt(45cm) = 55.385 mW (4.9)

Performing this calculation for all of the measurement points over the distance range

results in Figure 4.16.

Figure 4.16.: Power calculated at transmit side (source) for each measurement along r.
The average is ≈ 55 mW total integrated power. Sampling increments are 1 mm. The
noise around the average is due to variations in the measured voltage output from the
GaAs diode.
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4.2.1.2. Pyroelectric Measurements

The same procedure for acquiring data with the GaAs diode detector is used for the

pyroelectric detector. A Gentec EO QS5-BL detector and corresponding Gentec testing

setup are used to collect these power measurements. This detector is very sensitive to

all forms of thermal radiation and is much more difficult to acquire measurements. Very

slight changes in thermal background, such as a person in the room conducting measure-

ments, or temperature instability of the supporting electronics will produce a change in

signal. For these reasons we manually collect several data points and extrapolate a 1/R2

fit since this relationship was confirmed through the previous method. The detector

voltage and fit line for these measurements are shown in Figure 4.17.

Figure 4.17.: Gunn diode power measurements using the pyroelectric detector. The data
and 1/R2 fit line are shown.

For this method we use a different approach since the receiving detector does not have

an antenna, but is a simple detector with a fixed area. First, the following parameters

are defined:
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Description Symbol Value

Wavelength of Radiation λ 1.5 mm

Pyroelectric Responsivity Rd 93.500 V/W

Area of Pyroelectric Detector Ad 0.196 cm2

Diameter of Source Aperture ds 8.33 mm

Pyroelectric Absorption Factor α 0.25

Pyroelectric Measured Voltage Vmeasured – V

Total Power on the Detector Pd – mW

Total Power at the Source Ps – mW

Distance from Source r – cm

The power on the pyroelectric detector is calculated through:

Pd(r) =
Vmeasured
αRd

(4.10)

where α is the absorption factor of the pyroelectric detector. This factor is advertised

on the manufacturer’s specifications sheet as an estimated value of 10% at the 188 GHz

wavelength. Using this value for α did not produce reasonable results, and as this is not

an absolute calibrated detector (partly because absolute calibrated equipment does not

exist for many of the THz wavebands), the manufacturer was contacted to verify this

factor. Although undocumented, the manufacturer confirmed that many other customers

working in this wavelength region were seeing absorption at the same 25% level and that

an α = 0.25 is the appropriate value to use for power calculations.

The source is estimated as having a Gaussian profile following the three sigma rule.

This states that > 99.7% of the power will lie within 3σ of the mean in a normal

distribution. This agrees with the radiation profile of the source antenna as well which
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is shown in Figure 4.18.

Figure 4.18.: Radiation pattern of the Gunn diode source antenna. Provided by the
manufacturer Custom Microwave, Inc. [18].

Using 12 degrees as the angle of 3σ for the radiation profile, the standard deviation

for a matched 2-D Gaussian profile at a distance r = 45 cm is σ = 3.2 cm. A second

verification of this estimation can be calculated by estimating the transmit horn antenna

as a circular aperture for the source, and therefore the first zero for diffraction is found

by 1.22λ/ds. If this is estimated as the 3σ point, the standard deviation is easily found

to be σ = 3.3 cm. Both of these methods for estimating the source energy of a Gaussian

profile agree.

The volume of a Gaussian related to the distance from the source, r and the standard

deviation, σ is then used to calculate the total power:

Ps(r) = 2π
Pd(r)

Ad
σ2 (4.11)

Ps(45 cm) = 55.865 mW (4.12)
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This calculation agrees well with the GaAs diode measurements as well, and therefore

it is concluded with confidence that the source power is ≈ 55 mW. Because of the

inaccuracies in both methods, the sensitivity relationship for the GaAs diode detector

and the absorption factor for the pyroelectric detector, an uncertainty of±10% is assigned

to this value and corresponding responsivity and NEP calculations in the results section.
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4.3. MOSFET Response

4.3.1. Gas Laser Results

Worth noting are the experiments conducted with a 100 mW class 1.63 THz gas laser at

the UR. These did not produce any measurable results, likely in part due to instrumen-

tation noise and/or low responsivity. This is expected however, due to the fact that the

gate length, L, has a significant effect on response for a given radiation frequency. Tauk

et. al. [19] studied this variation of gate length vs frequency at 0.7 THz and documented

a significant drop in signal, as shown in Figure 4.19.

Figure 4.19.: Detection signal as a function of gate length at 0.7 THz Reprinted from [19]

Coupled with the fact that our chip has no gain stage, if signal would be present, it is

unlikely that we would be able to measure it. For these tests, the detector was aligned

with a parabolic gold coated mirror to focus the laser radiation. This setup is shown in

Figure 4.20. Lock-in measurement techniques are also employed to boost SNR.
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Figure 4.20.: Experiment Setup in the UR THz Laser Lab. A mechanical chopper wheel
and lock-in measurement technique are used to boost SNR. A HeNe alignment laser is
used to confirm algorithm operation since the silicon chip is sensitive to visible light.

4.3.2. Gunn Diode Results

4.3.2.1. Bowtie Antenna MOSFETs

The T-1 through T-5 MOSFETs are each characterized for THz response through test by

finding the peak biasing regimes and then zeroing in on maximum signal. Figures 4.21-

4.25 show the measurements for each MOSFET to find the peak response. These results

were gathered using the procedures outlined in Section 3.4 with the shutter and enclosure.

The Gunn diode is at a fixed distance of 6.3 cm for these tests. Response is ‘peaked’

through manual alignment of the MOSFET and source. As response characteristics are

realized, the response region is concentrated on. Several ranges of bias currents and

voltages are shown to help provide a perspective of how the response shifts with bias

changes. Along with the response signal, the inverse of signal-to-noise (SNR) or (NSR)

74



4. Results & Discussion

is shown to determine how this correlates with peak response. The NSR calculated as

the standard deviation divided by the signal mean will produce a sharp peak where the

best ratio lies.

Figure 4.21.: Bowtie T-1 Photoresponse & NSR.
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Figure 4.22.: Bowtie T-2 Photoresponse & NSR.

Figure 4.23.: Bowtie T-3 Photoresponse & NSR.
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Figure 4.24.: Bowtie T-4 Photoresponse & NSR.

Figure 4.25.: Bowtie T-5 Photoresponse & NSR.
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Notice how the peak response gate voltage shifts with respect to increasing iD. Also

seen is that the peak of the NSR curve coincides with the peak of the response voltage

curve for a given iD. The T-5 transistor which has the most source region extension has

the best response out of the five MOSFETs tested. Figure 4.26 shows the peak response

of all five transistors tested.

Figure 4.26.: Photoresponse 4U of all five MOSFETs at peak drain bias. Errorbars
represent the standard deviation of signal measurement.

The measurement results indicate that the source region extension helps increase the

responsivity without much noise penalty. T-3 is the exception, which could be explained

by a impedance mismatch, substrate defects, or testing error. Enhancements in the

test setup to allow less invasive switching of the transistor under test is needed to fully

characterize the T-3 exception. It is believed that this responsivity improvement due

to source region extension comes from the reduction of the effective voltage U0 seen by

the gate-channel interface, resulting in additional signal rectification. However, further
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detailed analysis and modeling are required to fully understand this mechanism. These

data are promising though, as efforts to improve pixel design as ongoing.

Figure 4.27.: Blowup of Figure 4.26 near peak response with NSR.

4.3.2.2. Spiral Antenna MOSFETs

The spiral antenna coupled MOSFETs did not produce any measurable results. There

are several possible reasons for the lack of response. One is that the gap between the

arms of 5 µm is significantly smaller than the wavelength of the radiation at 1.5 mm.

Thus, to the radiation this antenna design looks like a solid sheet of metal preventing

any signal coupling into the MOSFET. If the antenna electric field is the primary method

of coupling, this would also explain no signal as antenna arms are much further apart,

reducing the electric field strength near the source region. Finally, these antennas are not

designed for the 188 GHz radiation so response to begin with is somewhat unexpected.
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The next chip design for this project team will be able to determine the method of signal

coupling to help further explain this lack of response.

4.3.3. Response & Orientation

Another variable studied is the orientation of the pixel with respect to the polarization

of the incoming radiation. All the previous results present the case where the antenna,

gate channel, and radiation polarization are all aligned in the same horizontal direction

as shown in Figure 4.28.

Figure 4.28.: Diagram of polarized radiation. (Top) In the case where the electric field of
the antenna is aligned with the polarization of the source, the radiation will be coupled.
(Bottom) If the electric field of the antenna is perpendicular to the polarization of the
source, than little to no radiation is coupled.

It was not expected that the orientation would have such a drastic effect on the re-

sponse, since the antenna on the pixels are not optimized for 188 GHz radiation. Nev-

ertheless, Figure 4.29 shows that the orientation has a significant effect on the radiation

coupling into the MOSFET channel.
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Figure 4.29.: Bowtie T-1 Response. Horizontal vs Vertical Orientation. The polariza-
tion of the source is co-aligned with the horizontal case. The bowtie antenna and the
MOSFET gate (perpendicular to channel current flow) are in the same orientation.

4.3.4. Responsivity & NEP

In order to calculate the responsivity, the power of the source per unit area as well

as the definition of the pixel area must be determined. The power of the 188 GHz

Gunn diode was measured using two different types detectors and compared with original

specifications to arrive at an estimated total power of 55 mW. This is used for the

responsivity calculations and further details are explained in Section 4.2. The primary

uncertainty is the definition of the pixel’s effective aperture (area). The most precise

method is through measurement and deconvolution as explained in [20]. This method

calculates the effective aperture through a quasi-optical system estimation, as shown in

Figure 4.30.
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Figure 4.30.: Quasi-optical system interpretation. The focal region describes the plane
at which incident radiation interacts with the antenna. Reprinted from [20].

Through this estimation the spatial response of the antenna coupled detector B(r) is

[20]:

S(r) =

∫ ∞
−∞

B(r)I(r)δr (4.13)

where S(r) represents the detected signal and I(r) is the 2-D field distribution of the

incident Gaussian beam. The measured response signal from this detector can also be

considered as the convolution between B(r) and I(r) [20]:

S(x, y) = B(x, y) ∗ I(x, y) (4.14)

=

∫∫ ∞
−∞

B(x′, y′)I(x− x′, y − y′)δx′δy′ (4.15)

If S(x, y) and I(x, y) are known, the effective aperture can be found through deconvo-

lution. I(x, y) can be found through measurements using a knife-edge technique and

proper optical setup, and S(x, y) is the output signal from the detector system over a

2-D scan of the radiation source. The spatial response B(x, y) can then be found using
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a deconvolution technique such as the Richardson-Lucy algorithm [20]:

Bi+1(x, y) = Bi(x, y)

∫∫∞
−∞

S(x′,y′)
Si(x′,y′)

I(x− x′, y − y′)δx′δy′∫∫∞
−∞ I(x′, y′)δx′δy′

(4.16)

where Bi is the detector response and i is the current step of the calculation. The

resulting x-y projection of B(x, y) is the effective aperture of the pixel. Figure 4.31

shows an example result for an NbN microbolometer pixel. For this example the effective

aperture is 7.4 times larger than the physical size of the detector.
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Figure 4.31.: Example deconvolution result for NbN microbolometer pixel. (a) The in-
tensity distribution of the incident beam, I(x, y). (b) The 2-D measured scan S(x, y)
using the NbN pixel. (c) Deconvoluted spatial response of the pixel B(x, y). The x-y
projection of this response is the effective aperture (area) of the pixel which is 0.7 mm2,
7.4 times larger than the physical size of the detector (not including the dipole planar
antenna). Reprinted from [20].
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A much simpler albeit inaccurate method for relative responsivity numbers is to use

a predetermined physical area for the pixel aperture. This was chosen in part for direct

comparison with previous published results [17]. Here the area of the pixel, Apix, is

defined as the square active region surrounding the antenna and pixel (100 um x 100 um),

as in Figure 4.32.

Figure 4.32.: Pixel Area Definition. For comparison with other’s results, a 100 µm x
100 µm area is defined.

At a measurement distance of 6.3 mm, the power per area of the source, Pdensity = 44.5

mW cm−2. The responsivity of the test MOSFET is then calculated as a function of the

measured signal voltage, Vpix through:

Rv =
Vpix

Pdensity ∗ Apix

[
V

W

]
(4.17)

85



4. Results & Discussion

The noise equivalent power (NEP) based on a Johnson noise estimation is determined

through:

NEP =

√
4kbTRds

Rv

[
pW√
Hz

]
(4.18)

where kB = 1.38∗10−23 [ J
K

] is the Boltzmann constant, T = 300 [K] is the temperature,

and Rds = 10 [MΩ] is the resistance of the drain-source at the detection bias point. The

resulting responsivity and NEP for the test MOSFETs is shown in Figures 4.33 and 4.34.

Figure 4.33.: The responsivity as a function of detection voltage. The markers represent
the range of detection voltages from 50 mV (T-1) to 180 mV (T-5).
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Figure 4.34.: NEP as a function of the responsivity. The markers represent the range of
responsivity of the test MOSFETs from pW −1

√
Hz (T-1) to pW −1

√
Hz (T-5).

The T-5 transistor which has the highest response voltage of 180 mV out of the five test

transistors translates to a responsivity of 40 kV W−1 and NEP of 10 pW −1
√

Hz. Because of

uncertainty in the absolute calibration of the source power these numbers are estimated

to be within ±10% (see Section 4.2.1.2) of the calculated value.

The response of the T-1 transistor agrees well with other research [15, 17, 40, 51]

with a responsivity of 10 kV/W. Specifically, Schuster et. al. [17] achieve a maximum

responsivity of 5 kV/W out of a similar transistor with no gain stage. The active area

was larger by a factor of four at 210 um x 210 um and a dissimilar antenna describes the

factor of two difference.
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In order to realize the use of MOSFETs as a THz detector for FPAs, this thesis has

presented the background, testing efforts, and evaluated results for five test MOSFETs.

A thorough discussion of the radiation properties and state-of-the-art applications is

given, along with a review of the theory behind plasmonic response in silicon MOSFET

technologies. A test chip designed for direct broadband response is described and tested

at 0.2 THz and an increase in response due to the implementation of an extended source

region was found.

A significant amount of effort was put in to the development of the testing setup.

The implementation of serial communication between the Keithley SMU and MATLAB,

along with the resulting programming scheme provided a convenient data acquisition

system. Adding the shutter via digital control through the SMU, and a similar coding

effort with the motorized stages was important as well. All of these components allowed

for many data points to be gathered for a given test, reducing errors and allowing for

further statistical analysis of the results.

Results produced agree with theory and results published in literature [15, 17, 40, 51].

It was shown that the responsivity of the MOSFETs in the non-resonant regime was

strongly affected by the biasing parameters, particularly the drain current, iD. Adding a

drain bias, when compared with zero bias, greatly increases the MOSFET response in the

near-threshold region. An ideal bias is found empirically, as a change in bias current shifts

the maximum voltage response with respect to gate voltage. The increase in response
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falls off after the ideal drain bias, as asymmetry in the channel region is maximized

and additional current flow starts to interfere with response. The best response of the

five MOSFETs tested was T-5, which provided a maximum 180 mV of signal at a drain

bias current, iD = 200 nA. This MOSFET had the highest source region extension

(2 µm) which improved response. It seems that this responsivity improvement due to

an increase of Ls comes from the reduction of the effective voltage U0 seen by the gate-

channel interface. This additional signal rectification and results in a responsivity of

40 kV/W and NEP of 10 pW −1
√

Hz.

5.1. Future Work

Efforts to characterize this increased response further will continue under this CEIS re-

search partnership. The results presented were conducted with a single source frequency

and type. Ideally a range of source frequencies would be available in order to fully un-

derstand the mechanism(s) of radiation coupling. Lack of an absolute calibrated source

present some uncertainty in our measurements (±10%). Moving to a newer tunable type

source and/or a calibrated detector will reduce this uncertainty. Determining whether

the response of this novel design is linear or exponential with respect to source power is

also an important confirmation. It is possible that response effects differing from the cur-

rent theory are present, and need to be further understood. A novel theory of thermionic

response in the source region, modified by the source extension region is being discussed.

A subsequent chip design is currently underway with many new test MOSFET designs

and a 7 x 7 array based on the T-5 results to help explain these questions (see Figure 5.1).
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Figure 5.1.: Next-generation test chip design. Includes a 7x7 pixel array based on the
T-5 test MOSFET which includes on-chip CDS, current biasing, and gain. 15 new test
MOSFETs are also included to help parametrize future pixel design.

The current test setup does not have provisions for implementing a cooling mechanism,

which would allow for testing the response as a function of temperature as well. A custom

enclosure is being designed along with the new chip with provisions for a thermo-electric

cooler (TEC) which will allow for temperature control within one degree Celsius. Results

from this new chip will be able to determine the coupling effects of the current antenna,

a new optimized antenna based on updated modeling, and also some additional source

region modifications. Implementation of an on chip amplifier, current biasing circuit,

and correlated double sampling (CDS) within the array will greatly increase SNR and

provide an imaging capable package.
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A. Test Equipment Description

A.1. Keithley 2602A Source Measurement Unit

The Keithley 2602A is a series 2600A system source metyer instrument provides two

channels designed for precision, DC, pulse and low frequency AC source measure I-V

testing [52]. Specifications, protocols, commanding language and wiring provisions can

be found in the following list of useful documents provided by Keithley:

Document Title Document Number

Series 2600 Specifications No. 2594-0605

Series 2600A Reference Manual No. 2600AS-901-01 Rev. E

Series 2600 User’s Manual No. 2600S-900-01 Rev. A

Model 2600-TRIAX SMU Connector No. PA-916 Rev. A

Series 2600A Semiconductor Device Test Appli-

cations Guide

No. 2911
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A.1.1. Noise Considerations

The use of this type of instrument inevitably leads to the use of external wiring, which

introduces all sorts of issues with noise. Many of the noise concerns come from ground-

ing issues, but RF coupling into the wires or device enclosure, or coupling from other

electronics can also present many challenges. Some of the items that were realized to

effect the noise of measurements include:

•Wall power noise (used battery backup)

•Ground loops from different equipment power sources

•Proximity of other test equipment to SMU

•Chopper wheel noise from digital I/O into SMU

•Coupling into measurement cables

•Issues with circuit settling on first measurement in a series

•Board/Enclosure wiring configuration

The testing setup and enclosure were completely rewired with twinax cable along with

a new grounding scheme to attempt to minimize noise. The re-wiring of one of the

fanout boards is shown in Figure A.1. Efforts to reduce noise and ground loops are the

primary reasoning for the rewire. The power and ground connections were redone, and a

ground conduit was added behind the chip which connects the ground plane on the chip

to prevent any ground loops.

The board was then placed in the enclosure and cabled to the SMU using twinax

cabling. Twinax is a twisted pair of conduit with a single shield around the pair. For the

gate cable, the gate signal and signal reference (source) were connected to the twisted

pair, and the shield was connected to the guard on the SMU. For the drain cable, the

drain output signal and the signal reference (source, same as other) were connected to the
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(a) The power and ground connections were isolated
to single star points to minimize signal loops.

(b) A single ground conduit
was run behind the chip and
connected to each ground on
the chip to ensure a single
ground plane for the circuit.

Figure A.1.: Re-wiring of fanout board.

(a) Board mounted in the test enclosure. (b) SMU connector. The jumpers connect all of
the guard signals together and to the shield on

the twinax.

Figure A.2.: THz test enclosure and connections.

twisted pair, and the shield was connected to the guard on the SMU. On the enclosure
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side, all four twisted pair signals were isolated from the enclosure using feed through

capacitors. This creates a balanced signal between the two twinax connections and the

enclosure. We also left provisions to connect the guards to the enclosure ground. The

enclosure ground is isolated from the reference ground (source) via these feed through

capacitors.

As a comparison, Figure A.3 shows a similar test with the system in the UR lab before

the rewire.

(a) Before Rewire: FFT of Vds Signal (b) Before Rewire: Difference of FFT

(c) After Rewire: FFT of Vds Signal (d) After Rewire: Difference of FFT

Figure A.3.: Noise comparison before and after rewire.
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Several grounding schemes using the enclosure ground, guard wires, and equipment

grounds are tested. The configuration with the lowest noise was with the guard wires left

connected on the SMU side only, the enclosure ground tied to the chassis ground on the

SMU via the banana jack cable, and the test equipment running on a battery UPS. Other

considerations to reduce the noise including a grounding strap that was affixed from the

optics table to the earth ground of the circuit breaker box in the lab, and the computer

used with the SMU running on battery to prevent ground noise entering through the

serial connection.
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C. MATLAB Test Scripts

The following section includes the MATLAB scripts used in testing of the first two
generations of test transistors.

C.1. Programming the Keithley 2602

The source measurement unit(SMU) can communicate via several connections but for
this work a serial connection was used. Parameters and pinouts can be found in the
Reference Manual. I preferred to use a Macbook Pro running Matlab 2013b, a USB-to-
Serial adapter, and write my own scripts. This allowed all od the data to be commanded
and read directly into MATLAB from the SMU which makes data analysis very easy.
The programming language the SMU uses is script based, so commands are sent in
ASCII strings over the serial connection, and the SMU then runs the programs on the
unit itself. There are two approaches to take by doing this. You can either send each
command individually, or send a whole program, or section of the program to be run on
the SMU one at a time. There are pros and cons to each. Because of the speed limitation
of the serial communication, I found it best to send one command at a time, unless a
loop was required to perform a voltage-measurement sweep. This allows the MATLAB
send and receive as coded. One issue with this is that the serial input buffer will fill
up quickley if lots of data points are being read back to the computer. This has to be
managed properly in the MATLAB code or timeouts and data overwrites will occur.
Another issue is managing whether the SMU or MATLAB is managing variable values,
and making sure they are passed back and forth properly. An example script would then
look something like:

1. Setup MATLAB variables

2. Command SMU to setup each parameter individually (modes,limits, etc)

3. Command SMU to perform the testing loop all at once

4. Read back variables individually from SMU to MATLAB and ensure vector lengths
are correct

5. Reset SMU for next experiment
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C.2. TSP Transconductance Code

This is the example code tsp file provided by Keithley [52] which sweeps the gate voltage
and measures the drain current to provide a transconductance curve. It is written in the
Keithley programming language only. This can be run by using the Test Script Builder
software.

Code

--Transconductance():

This program sources a voltage bias on a drain-source of a FET (Vds),

sources a voltage on the gate (Vgs1), and measures the drain-source current

(Id1). Then, another source value (Vgs2) is sourced and the Ids2 is

measured.

The Transconductance (gfs) is then calculated by taking the change in Ids

divided by the change in Vgs.

The drain-source voltage (Vds), Transconductance (gfs), gate-source voltage

(Vgs), and drain-source current (Id) are returned.

Required equipment:

(1) Dual channel Keithley 2600 Series System Sourcemeter(c)

(1) SD210 N-channel FET

Running this script creates functions which can be used to create a

Transconductance Test of FET’s. The default values are for an N-channel

SD210 FET.

The functions created are:

1. Transconductance(vgsstart, vgsstop, vgssteps, vdsbias)

--Default values vgsstart = 0V, vgsstop = 5V, vgssteps = 100,

vdsbias = 10V

2. Check_Comp()

See detailed information listed in individual functions

To Run:

1) From Test Script Builder

- Right click in the program window, select "Run as TSP"

- At the TSP> prompt in the Instrument Control Panel, type

Transconductance()

2) From an external program

- Send the entire program text as a string using standard GPIB Write
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calls.

Rev1: JAC 6.18.2007

]]--

------------------ Keithley TSP Function ------------------

--function Transconductance(vgsstart, vgsstop, vgssteps, vdsbias)

--Configure SMUA to source a user defined voltage on the drain-source (Vds)

--while SMUB performs a fixed voltage bias (Vgs)on the gate-source

vgsstart=0

vgsstop=2.5

vgssteps=100 --and the Ids is measured.

vdsbias=0.1 --SMUB then steps to the next base current and the

Ic is measured.

--Returns measured Vds, Vgs, Id, gfs values are

returned.

--Global variables

l_icmpl = 1E-3 --Source compliance

--Shared local variables

l_nplc = 1 --Integration rate of measurement

--Local sweep variables

l_vgsstart = vgsstart --Vgs start voltage

l_vgsstop = vgsstop --Vgs sweep stop voltage

l_vgssteps = vgssteps --Number of steps in sweep

l_vdsbias = vdsbias --Drain-source voltage

--Default values and level check

if (l_vgsstart == nil) then --Use default value

l_vgsstart = 0

end --if

if (l_vgsstart > 1) then --Coerce value

l_vgsstart = 0.1

end --if

if (l_vgsstop == nil) then --Use default value

l_vgsstop = 1

end --if

if (l_vgsstop > 5) then --Coerce value

l_vgsstop = 5

end --if
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if (l_vgssteps == nil) then --Use default value

l_vgssteps = 50

end --if

if (l_vgssteps > 100) then --Coerce value

l_vgssteps = 100

end --if

l_vgsstep = (l_vgsstop - l_vgsstart)/ (l_vgssteps - 1) --Vbe step size

l_vgssource_val = l_vgsstart --Source value during sweep

l_i = 1 --Iteration variable

if (l_vds_bias == nil) then --Use default value

l_vds_bias = 0.1

end --if

if (l_vds_bias > 1) then --Coerce value

l_vds_bias = 1

end --if

--Data tables

l_vgs = {} --Create data table for gate-source voltage

l_id = {} --Create data table for drain-source current

l_gfs = {} --Create data table for transconductance (gfs)

smua.reset() --Reset SMU

smub.reset() --Reset SMU

errorqueue.clear() --Clear the error queue

--Configure Collector/Emitter (SMUA) source and measure settings

smua.source.func = smua.OUTPUT_DCVOLTS

smua.source.autorangev = smua.AUTORANGE_ON --Enable source autorange

smua.source.levelv = 0

smua.source.limiti = l_icmpl

smua.measure.autorangei = smua.AUTORANGE_ON --Enable measure autorange

smua.measure.autozero = smua.AUTOZERO_AUTO

smua.measure.nplc = l_nplc --Measurement integration rate

smua.source.output = smua.OUTPUT_ON --Enable Output

--Configure Base (SMUB) source and measure settings

smub.source.func = smub.OUTPUT_DCVOLTS

smub.source.autorangev = smub.AUTORANGE_ON --Enable source autorange

smub.source.levelv = 0

smub.source.limiti = l_icmpl
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smub.measure.autorangev = smub.AUTORANGE_ON --Enable measure autorange

smub.measure.autozero = smub.AUTOZERO_AUTO

smub.measure.nplc = l_nplc --Measurement integration rate

smub.source.output = smub.OUTPUT_ON --Enable Output

smua.source.levelv = l_vds_bias

--Execute sweep

for l_i = 1,l_vgssteps do

if (l_i == 1) then --Intialize start source value

l_vgssource_val = l_vgsstart

end --if

--delay(1)

l_vgs[l_i] = smub.measure.v() --Measure Vgs

l_id[l_i] = smua.measure.i() --Measure Id

l_vgssource_val = l_vgssource_val + l_vgsstep --Calculate new source value

if (l_i == l_vgssteps) then --Reinitialize voltage value after last iteration

l_vgssource_val = l_vgsstart

end --if

smub.source.levelv = l_vgssource_val --Increment source

end --for

smua.source.output = smua.OUTPUT_OFF --Disable output

smub.source.output = smub.OUTPUT_OFF --Disable output

smua.source.levelv = 0 --Return source to bias level

smub.source.levelv = 0 --Return source to bias level

--Print_Data(l_vds_bias, l_vgssteps, l_vgs, l_id)

--end--function Transconductance()

--function Print_Data(vdsbias, vgssteps,vgs, id)

--Calculate Gfs value and print data to output queue

--Local Variables

--l_vds_bias = vdsbias --Vds bias value

--l_vgs_steps = vgssteps --Number of steps in Vgs sweep

--l_vgs = vgs --Gate-source Voltage data

--l_id = id --Drain-source current data

l_gfs = {} --Table for Transconductance calculations

l_i = 1 --Iteration variable
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--Calculate gfs values and populate table

for l_i = 1,vgssteps do

if (l_i ~= 1) then --If not the first iteration, calculate gfs

l_gfs[l_i] = (l_id[l_i] - l_id[l_i - 1])/(l_vgs[l_i] - l_vgs[l_i - 1])

--gfs = dId/dVgs

end--if

end --for

l_i = 1 --Reinitialize Vgs iteration variable

print("")

print("Vds", l_vds_bias)

print("Vgs (V)","Id (A)","gfs (s)")

for l_i = 2, vgssteps do

print(l_vgs[l_i],l_id[l_i], l_gfs[l_i])

end --for

--end --function Print_Data()

--end Transconductance()

--[[
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C.3. Serial Port Enable Code

This script will setup the USB-to-Serial adapter as a serial port ‘obj1’ in MATLAB.
Commands are then written to the port as strings. Scanning the port reads data on the
input buffer back into MATLAB as variables.

enableserial.m

1 %% Load serial port object and run beep sequence
2 clearvars -except testnum;
3

4 % Find a serial port object.
5 obj1 = instrfind('Type', 'serial', 'Port', '/dev/tty.usbserial', 'Tag', ...

'');
6

7 % Create the serial port object if it does not exist
8 % otherwise use the object that was found.
9 if isempty(obj1)

10 obj1 = serial('/dev/tty.usbserial');
11 else
12 fclose(obj1);
13 obj1 = obj1(1)
14 end
15

16 % Set Buffer Sizes
17 set(obj1,'BaudRate',115200,'Timeout',120);
18 set(obj1, 'InputBufferSize', 5000000);
19 set(obj1, 'OutputBufferSize', 12000);
20

21 % Connect to instrument object, obj1.
22 fopen(obj1);
23

24 % Communicating with instrument object, obj1.
25 fprintf(obj1, '*RST'); %command to reset the keithley
26 fprintf(obj1, 'smua.reset()'); % Reset SMU
27 fprintf(obj1, 'smub.reset()'); % Reset SMU
28 fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
29 fprintf(obj1, '*IDN?'); %Request identification from keithley
30 data1 = fscanf(obj1); %read identification info
31

32 %Beeper tones for startup
33 fprintf(obj1, 'beeper.enable = beeper.ON'); %enable beeper
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34 fprintf(obj1, 'beeper.beep(0.12, 500)'); %send beeper tone ...
(duration,frequency)

35 fprintf(obj1, 'beeper.beep(0.12, 800)'); %send beeper tone ...
(duration,frequency)

36 fprintf(obj1, 'beeper.beep(0.12, 1000)'); %send beeper tone ...
(duration,frequency)

37 fprintf(obj1, 'beeper.beep(0.12, 2000)'); %send beeper tone ...
(duration,frequency)
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C.4. Transconductance Script

This script will perform a transconductance sweep on a MOSFET. It is modified from
the provided Keithley TSP script from Section C.2. Channel A is connected to the Drain
and Channel B is connected to the Gate. These connections are the same for all scripts.

transconductance.m

1 %% Transconductance script
2 % This program sources a voltage bias on a drain-source of a FET (Vds),
3 % sources a voltage on the gate (Vgs1), and measures the drain-source ...

current (Id1).
4 % Then, another source value (Vgs2) is sourced and the Ids2 is measured.
5 %
6 % The Transconductance (gfs) is then calculated by taking the change in Ids
7 % divided by the change in Vgs.
8 %
9 % The drain-source voltage (Vds), Transconductance (gfs), gate-source ...

voltage (Vgs),
10 % and drain-source current (Id) are returned.
11 close all;
12 clearvars -except obj1 testnum;
13 testnum=testnum+1;
14

15 cd '/Users/gfertig/Dropbox/Thesis/THz Project/Testing/20140418 Test Data'
16 foldername = [num2str(testnum),'-OldBoard-Chip1-T5-Trans'];
17 fprintf(obj1, '*RST'); %command to reset the keithley
18 fprintf(obj1, 'smua.reset()'); % Reset SMU
19 fprintf(obj1, 'smub.reset()'); % Reset SMU
20 fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
21

22 fprintf(obj1, 'display.clear()');
23 fprintf(obj1, 'display.settext("$BTest in Progess$B")');
24 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
25 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
26

27 fprintf(obj1, ['digio.writebit(2,0) ']); %Set digio bit 2 to High for ...
shutter open

28 fprintf(obj1, 'vgsstart=0');
29 fprintf(obj1, 'vgsstop=2.5');
30 fprintf(obj1, 'vgssteps=100');
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31 vgssteps=100;
32 fprintf(obj1, 'vdsbias=0.1');
33

34 fprintf(obj1, 'l icmpl = 1E-3'); % Source compliance
35 fprintf(obj1, 'l nplc = 1'); % Integration rate of measurement
36

37 % Local sweep variables
38 fprintf(obj1, 'l vgsstart = vgsstart'); % Vgs start voltage
39 fprintf(obj1, 'l vgsstop = vgsstop'); % Vgs sweep stop voltage
40 fprintf(obj1, 'l vgssteps = vgssteps'); % Number of steps in sweep
41 fprintf(obj1, 'l vdsbias = vdsbias'); % Drain-source voltage
42

43 % Default values and level check
44 fprintf(obj1, 'if (l vgsstart == nil) then l vgsstart = 0 end'); % Use ...

default value
45 fprintf(obj1, 'if (l vgsstart > 1) then l vgsstart = 0.1 end'); % ...

Coerce value
46 fprintf(obj1, 'if (l vgsstop == nil) then l vgsstop = 1 end'); % Use ...

default value
47 fprintf(obj1, 'if (l vgsstop > 5) then l vgsstop = 5 end'); % Coerce value
48 fprintf(obj1, 'if (l vgssteps == nil) then l vgssteps = 50 end'); % Use ...

default value
49 fprintf(obj1, 'if (l vgssteps > 100) then l vgssteps = 100 end'); % ...

Coerce value
50 fprintf(obj1, 'l vgsstep = (l vgsstop - l vgsstart)/ (l vgssteps - ...

1)'); % Vbe step size
51 fprintf(obj1, 'l vgssource val = l vgsstart'); % Source value during sweep
52 fprintf(obj1, 'if (l vdsbias == nil) then l vdsbias = 0.1 end'); % Use ...

default value
53 fprintf(obj1, ['if (l vdsbias > 1) then ',...
54 'l vdsbias = 1 ',...
55 'end']); % Coerce value
56

57 % Data tables
58 fprintf(obj1, 'l vgs = {}'); % Create data table for gate-source voltage
59 fprintf(obj1, 'l id = {}'); % Create data table for drain-source current
60 fprintf(obj1, 'l gfs = {}'); % Create data table for transconductance (gfs)
61

62 % fprintf(obj1, 'smua.reset()'); % Reset SMU
63 % fprintf(obj1, 'smub.reset()'); % Reset SMU
64 % fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
65

66 % Configure Collector/Emitter (SMUA) source and measure settings
67 fprintf(obj1, 'smua.source.func = smua.OUTPUT DCVOLTS');
68 fprintf(obj1, 'smua.source.autorangev = smua.AUTORANGE ON'); % Enable ...

source autorange
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69 fprintf(obj1, 'smua.source.levelv = 0');
70 fprintf(obj1, 'smua.source.limiti = l icmpl');
71 fprintf(obj1, 'smua.measure.autorangei = smua.AUTORANGE ON'); % Enable ...

measure autorange
72 %fprintf(obj1, 'smua.measure.rangei = smua.AUTORANGE ON'); % Enable ...

measure autorange
73 fprintf(obj1, 'smua.measure.autozero = smua.AUTOZERO AUTO');
74 fprintf(obj1, 'smua.measure.nplc = l nplc'); % Measurement integration rate
75 fprintf(obj1, 'smua.source.output = smua.OUTPUT ON'); % Enable Output
76

77 % Configure Base (SMUB) source and measure settings
78 fprintf(obj1, 'smub.source.func = smub.OUTPUT DCVOLTS');
79 fprintf(obj1, 'smub.source.autorangev = smub.AUTORANGE ON'); % Enable ...

source autorange
80 fprintf(obj1, 'smub.source.levelv = 0');
81 fprintf(obj1, 'smub.source.limiti = l icmpl');
82 fprintf(obj1, 'smub.measure.autorangev = smub.AUTORANGE ON'); % Enable ...

measure autorange
83 fprintf(obj1, 'smub.measure.autozero = smub.AUTOZERO AUTO');
84 fprintf(obj1, 'smub.measure.nplc = l nplc'); % Measurement integration rate
85 fprintf(obj1, 'smub.source.output = smub.OUTPUT ON'); % Enable Output
86 fprintf(obj1, 'smua.source.levelv = l vdsbias');
87

88 % Execute sweep
89 fprintf(obj1, 'display.clear()');
90 fprintf(obj1, 'display.screen = 2');
91 fprintf(obj1,[ 'for l i = 1,l vgssteps do ',...
92 'if (l i == 1) then ',... % Intialize start source ...

value
93 'l vgssource val = l vgsstart ',...
94 'end ',...
95 'l vgs[l i] = smub.measure.v() ',... % Measure Vgs
96 'l id[l i] = smua.measure.i() ',... % Measure Id
97 'l vgssource val = l vgssource val + l vgsstep ',... % ...

Calculate new source value
98 'if (l i == l vgssteps) then ',... % Reinitialize ...

voltage value after last iteration
99 'l vgssource val = l vgsstart ',...

100 'end ',...
101 'smub.source.levelv = l vgssource val ',... % Increment ...

source
102 'end']);
103

104 fprintf(obj1, 'smua.source.output = smua.OUTPUT OFF'); % Disable output
105 fprintf(obj1, 'smub.source.output = smub.OUTPUT OFF'); % Disable output
106 fprintf(obj1, 'smua.source.levelv = 0'); % Return source to bias level
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107 fprintf(obj1, 'smub.source.levelv = 0'); % Return source to bias level
108

109 fprintf(obj1, 'display.clear()');
110 fprintf(obj1, 'display.settext("$BSending Data$B")');
111

112 fprintf(obj1, 'l gfs = {}'); % Table for Transconductance calculations
113 fprintf(obj1, 'l i = 1'); % Iteration variable
114

115 % Calculate gfs values and populate table
116 fprintf(obj1, ['for l i = 1,vgssteps do ',...
117 'if (l i 6= 1) then ',... % If not the first ...

iteration, calculate gfs
118 'l gfs[l i] = (l id[l i] - l id[l i - ...

1])/(l vgs[l i] - l vgs[l i - 1]) ',...
119 'end ',...
120 'end']);
121

122 % Loop for data read
123 fprintf(obj1, 'print(l vdsbias)');
124 vdsbias = str2num(fscanf(obj1)); %Read data from serial port and assign ...

to var
125

126 for i=1:vgssteps %Loop to print all tables to matlab variables
127 fprintf(obj1, ['print(l vgs[',num2str(i),']) \n'] );
128 temp1 = fscanf(obj1);
129 temp1 = strtrim(temp1);
130 if strcmp(temp1,'nil') == 1
131 vgs(i) = 0;
132 else
133 vgs(i)= str2num(temp1);
134 end
135

136 fprintf(obj1, ['print(l id[',num2str(i),']) \n'] );
137 temp2 = fscanf(obj1);
138 temp2 = strtrim(temp2);
139 if strcmp(temp2,'nil') == 1
140 id(i) = 0;
141 else
142 id(i)= str2num(temp2);
143 end
144

145 fprintf(obj1, ['print(l gfs[',num2str(i),']) \n'] );
146 temp3 = fscanf(obj1);
147 temp3 = strtrim(temp3);
148 if strcmp(temp3,'nil') == 1
149 gfs(i) = 0;
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150 else
151 gfs(i)= str2num(temp3);
152 end
153 end
154

155 %% Print to Keithley screen and beep complete sequence
156 fprintf(obj1, 'display.clear()');
157 fprintf(obj1, 'display.settext("Test Complete")');
158 fprintf(obj1, 'beeper.beep(0.12, 500)'); %send beeper tone ...

(duration,frequency)
159 fprintf(obj1, 'beeper.beep(0.12, 800)'); %send beeper tone ...

(duration,frequency)
160 fprintf(obj1, 'beeper.beep(0.12, 1000)'); %send beeper tone ...

(duration,frequency)
161 fprintf(obj1, 'beeper.beep(0.12, 2000)'); %send beeper tone ...

(duration,frequency)
162

163 %% Plot Transcunductance Curves
164 figure();
165 h = plot (vgs,gfs,'-*r');
166 hold on;
167 plot(vgs,id,'-b');
168 x = get(h,'XData'); % get the plotted data
169 y = get(h,'YData');
170 imin = find(min(y) == y);% find the index of the min and max
171 imax = find(max(y) == y);
172 % text(x(imin),y(imin),[' Minimum = ',num2str(y(imin))],...
173 % 'VerticalAlignment','middle',...
174 % 'HorizontalAlignment','left',...
175 % 'FontSize',14)
176 text(x(imax),y(imax),['Peak = ',num2str(y(imax))],...
177 'VerticalAlignment','bottom',...
178 'HorizontalAlignment','right',...
179 'FontSize',14)
180 set(gca,'fontsize',14);
181 set(gcf, 'color', 'w');
182 grid on;
183 legend('Gfs','Id (A)');
184 title('MOSFET Transconductance Curve');
185 xlabel('Gate Voltage, Vgs (V)');
186 ylabel('Gfs (dI/dV); Id (A)');
187 mkdir([foldername]);
188 print('-dpng', [foldername,'\transconductance.png']);
189

190 %% Reset Keithley & Save Data
191 save([foldername,'/transconductance.mat']);
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192 fprintf(obj1, '*RST'); %command to reset the keithley
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C.5. Drain Sweep Scripts

This script will sweep the gate voltage over a specified range, and at each gate voltage,
perform a sweep of the drain voltage over a specified range while measureing the current.
This then in turn provides the family of curves of the MOSFET. The drainsweep-condplot
script also calculates and plots the conductance and resistance based on measured values.

drainsweep.m

1 %% Sweeps Vgs, and conducts a Source-Drain Sweep for each fixed Vgs
2

3 clearvars -except obj1 testnum;
4 testnum=testnum+1;
5

6 cd '/Users/gfertig/Dropbox/Thesis/THz Project/Testing/20140207 Test Data'
7 foldername = [num2str(testnum),'-OldBoard-T3-DrainSweep'];
8 fprintf(obj1, '*RST'); %command to reset the keithley
9 fprintf(obj1, 'smua.reset()'); % Reset SMU

10 fprintf(obj1, 'smub.reset()'); % Reset SMU
11 fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
12

13 fprintf(obj1, 'display.clear()');
14 fprintf(obj1, 'display.settext("$BTest in Progess$B")');
15 fprintf(obj1, 'beeper.beep(0.1, 500)'); %send beeper tone ...

(duration,frequency)
16 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
17

18 for j=1:3
19 vgs bias = 0.4+0.05*j;
20 fprintf(obj1, ['vgs bias=',num2str(vgs bias)]);
21 fprintf(obj1, 'vdsstart=0');
22 fprintf(obj1, 'vdsstop=0.3');
23 fprintf(obj1, 'vdssteps=121');
24 vdssteps = 121;
25

26 % Global variables
27 fprintf(obj1, 'l icmpl = 1E-3'); % Source compliance
28

29 % Shared local variables
30 fprintf(obj1, 'l nplc = 1'); % Integration rate of measurement
31

32 % Default values and level check
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33 fprintf(obj1, 'if (vdsstart == nil) then vdsstart = 0 end'); % Use ...
default value

34 fprintf(obj1, 'if (vdsstart > 1) then vdsstart = 0.1 end'); % ...
Coerce value

35 fprintf(obj1, 'if (vdsstop == nil) then vdsstop = 3 end'); % Use ...
default value

36 fprintf(obj1, 'if (vdsstop > 3.3) then vdsstop = 3.3 end'); % ...
Coerce value

37 fprintf(obj1, 'if (vdssteps == nil) then vdssteps = 50 end'); % Use ...
default value

38 %fprintf(obj1, 'if (vdssteps > 100) then vdssteps = 100 end'); % ...
Coerce value

39 fprintf(obj1, 'vdsstep = (vdsstop - vdsstart) / (vdssteps - 1)'); ...
% step size

40 fprintf(obj1, 'vdssource val = vdsstart'); % Source value during sweep
41 fprintf(obj1, 'l i = 1'); % Iteration variable
42

43 fprintf(obj1, 'if (vgs bias == nil) then vgs bias = 0.5 end'); % ...
Use default value

44 fprintf(obj1, 'if (vgs bias > 3.3) then vgs bias = 3.3 end'); % ...
Coerce value

45

46 % Data tables
47 fprintf(obj1, 'vds = {}'); % Create data table for drain-source ...

voltage
48 fprintf(obj1, 'id = {}'); % Create data table for drain-source current
49 fprintf(obj1, 'vgs = {}'); % Create data table for gate
50

51 % fprintf(obj1, 'smua.reset()'); % Reset SMU drain
52 % fprintf(obj1, 'smub.reset()'); % Reset SMU gate
53 % fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
54

55 % Configure (SMUA) source and measure settings
56 fprintf(obj1, 'smua.source.func = smua.OUTPUT DCVOLTS');
57 fprintf(obj1, 'smua.source.autorangev = smua.AUTORANGE ON'); % ...

Enable source autorange
58 fprintf(obj1, 'smua.source.levelv = 0');
59 fprintf(obj1, 'smua.source.limiti = l icmpl');
60 %fprintf(obj1, 'smua.measure.autorangei = smua.AUTORANGE ON'); % ...

Enable measure autorange
61 fprintf(obj1, 'smua.measure.rangei = 1E-6'); % Enable measure ...

autorange
62 fprintf(obj1, 'smua.measure.autozero = smua.AUTOZERO AUTO');
63 fprintf(obj1, 'smua.measure.nplc = l nplc'); % Measurement ...

integration rate
64 fprintf(obj1, 'smua.source.output = smua.OUTPUT ON'); % Enable Output
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65

66 % Configure SMUb gate and measure settings
67 fprintf(obj1, 'smub.source.func = smub.OUTPUT DCVOLTS');
68 fprintf(obj1, 'smub.source.autorangev = smub.AUTORANGE ON'); % ...

Enable source autorange
69 fprintf(obj1, 'smub.source.levelv = 0');
70 fprintf(obj1, 'smub.source.limiti = l icmpl');
71 fprintf(obj1, 'smub.measure.autorangev = smub.AUTORANGE ON'); % ...

Enable measure autorange
72 fprintf(obj1, 'smub.measure.autozero = smub.AUTOZERO AUTO');
73 fprintf(obj1, 'smub.measure.nplc = l nplc'); % Measurement ...

integration rate
74 fprintf(obj1, 'smub.source.output = smub.OUTPUT ON'); % Enable Output
75 fprintf(obj1, 'smub.source.levelv = vgs bias');
76

77 % Execute sweep
78 fprintf(obj1, 'display.clear()');
79 fprintf(obj1, 'display.screen = 2');
80 fprintf(obj1, ['for l i = 1,vdssteps do ',...
81 'if (l i == 1) then ',...% Intialize start source value
82 'vdssource val = vdsstart ',...
83 'end ' ,...
84 'vgs[l i] = smub.measure.v() ',... % Measure Vgs
85 'id[l i] = smua.measure.i() ',... % Measure Id
86 'vds[l i] = smua.measure.v() ',...
87 'vdssource val = vdssource val + vdsstep ',... % Calculate new ...

source value
88 'if (l i == vdssteps) then ',... % Reinitialize voltage value ...

after last iteration
89 'vdssource val = vdsstart ',...
90 'end ',...
91 'smua.source.levelv = vdssource val ',... % Increment source
92 'end ']);
93

94 fprintf(obj1, 'smua.source.output = smua.OUTPUT OFF'); % Disable ...
output

95 fprintf(obj1, 'smub.source.output = smub.OUTPUT OFF'); % Disable ...
output

96 fprintf(obj1, 'smua.source.levelv = 0'); % Return source to bias level
97 fprintf(obj1, 'smub.source.levelv = 0'); % Return source to bias level
98

99 fprintf(obj1, 'display.clear()');
100 fprintf(obj1, 'display.settext("$BSending Data$B")');
101

102 fprintf(obj1, 'l i = 1'); % Reinitialize iteration variable
103
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104 % Loop for data read
105 fprintf(obj1, 'print(vgs bias)');
106 vgsbias(j) = str2num(fscanf(obj1)); %Read data from serial port and ...

assign to var
107

108 for i=1:vdssteps %Loop to print all tables to matlab variables
109 fprintf(obj1, ['print(id[',num2str(i),']) \n'] );
110 temp2 = fscanf(obj1);
111 temp2 = strtrim(temp2);
112 if strcmp(temp2,'nil') == 1
113 id(j,i) = 0;
114 else
115 id(j,i)= str2num(temp2);
116 end
117

118 fprintf(obj1, ['print(vds[',num2str(i),']) \n'] );
119 temp3 = fscanf(obj1);
120 temp3 = strtrim(temp3);
121 if strcmp(temp3,'nil') == 1
122 vds(j,i) = 0;
123 else
124 vds(j,i)= str2num(temp3);
125 end
126 end
127 end
128

129 %% Print to Keithley screen and beep complete sequence
130 fprintf(obj1, 'display.clear()');
131 fprintf(obj1, 'display.settext("Test Complete")');
132 fprintf(obj1, 'beeper.beep(0.12, 500)'); %send beeper tone ...

(duration,frequency)
133 fprintf(obj1, 'beeper.beep(0.12, 800)'); %send beeper tone ...

(duration,frequency)
134 fprintf(obj1, 'beeper.beep(0.12, 1000)'); %send beeper tone ...

(duration,frequency)
135 fprintf(obj1, 'beeper.beep(0.12, 2000)'); %send beeper tone ...

(duration,frequency)
136

137 %% Plot Curves
138 % figure();
139 % plot ...

(vds(3,:),id(3,:),vds(4,:),id(4,:),vds(5,:),id(5,:),vds(6,:),id(6,:),
140 vds(7,:),id(7,:),vds(8,:),id(8,:));
141 % set(gca,'fontsize',14);
142 % set(gcf, 'color', 'w');
143 % grid on;
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144 % legend([num2str(vgsbias(3)),' Vgs'],[num2str(vgsbias(4)),' ...
Vgs'],[num2str(vgsbias(5)),' Vgs'],[num2str(vgsbias(6)),' ...
Vgs'],[num2str(vgsbias(7)),' Vgs'],[num2str(vgsbias(8)),' Vgs']);

145 % set(legend,...
146 % 'Position',[0.215939049121225 0.582099669520804 0.116189725101397 ...

0.286929172299835]);
147 % title('MOSFET Family of Curves');
148 % xlabel('Drain Voltage, Vds (V)');
149 % ylabel('Drain Current, Id (A)');
150 % mkdir([foldername]);
151 % print('-dpng', [foldername,'\familyofcurves2.png']);
152

153 %% Plot Curves
154 figure();
155 plot (vds(1,:),id(1,:),vds(2,:),id(2,:),vds(3,:),id(3,:));
156 set(gca,'fontsize',14);
157 set(gcf, 'color', 'w');
158 grid on;
159 legend([num2str(vgsbias(1)),' Vgs'],[num2str(vgsbias(2)),' ...

Vgs'],[num2str(vgsbias(3)),' Vgs']);
160 set(legend,...
161 'Position',[0.215939049121225 0.582099669520804 0.116189725101397 ...

0.286929172299835]);
162 title('MOSFET Family of Curves');
163 xlabel('Drain Voltage, Vds (V)');
164 ylabel('Drain Current, Id (A)');
165 mkdir([foldername]);
166 print('-dpng', [foldername,'\familyofcurves.png']);
167

168 %% Reset Keithley & Save Data
169 save([foldername,'/drainsweep.mat']);
170 fprintf(obj1, '*RST'); %command to reset the keithley
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drainsweep condplot.m

1 %% Sweeps Vgs, and conducts a Source-Drain Sweep for each fixed Vgs
2

3 clearvars -except obj1 testnum;
4 testnum=testnum+1;
5

6 cd '/Users/gfertig/Dropbox/Thesis/THz Project/Testing/20140318 Test ...
Data - RTS'

7 foldername = [num2str(testnum),'-Spin2-Chip1-T2-DrainSweep'];
8 fprintf(obj1, '*RST'); %command to reset the keithley
9 fprintf(obj1, 'smua.reset()'); % Reset SMU

10 fprintf(obj1, 'smub.reset()'); % Reset SMU
11 fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
12

13 fprintf(obj1, 'display.clear()');
14 fprintf(obj1, 'display.settext("$BTest in Progess$B")');
15 fprintf(obj1, 'beeper.beep(0.1, 500)'); %send beeper tone ...

(duration,frequency)
16 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
17 fprintf(obj1, ['digio.writebit(2,0) ']); %Set digio bit 2 to High for ...

shutter open
18

19 for j=1:15
20 vgs bias = 0.2+0.1*j;
21 fprintf(obj1, ['vgs bias=',num2str(vgs bias)]);
22 fprintf(obj1, 'vdsstart=0');
23 fprintf(obj1, 'vdsstop=3');
24 fprintf(obj1, 'vdssteps=121');
25 vdssteps = 121;
26

27 % Global variables
28 fprintf(obj1, 'l icmpl = 100E-3'); % Source compliance
29

30 % Shared local variables
31 fprintf(obj1, 'l nplc = 1'); % Integration rate of measurement
32

33 % Default values and level check
34 fprintf(obj1, 'if (vdsstart == nil) then vdsstart = 0 end'); % Use ...

default value
35 fprintf(obj1, 'if (vdsstart > 1) then vdsstart = 0.1 end'); % ...

Coerce value
36 fprintf(obj1, 'if (vdsstop == nil) then vdsstop = 3 end'); % Use ...

default value
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37 fprintf(obj1, 'if (vdsstop > 3.3) then vdsstop = 3.3 end'); % ...
Coerce value

38 fprintf(obj1, 'if (vdssteps == nil) then vdssteps = 50 end'); % Use ...
default value

39 %fprintf(obj1, 'if (vdssteps > 100) then vdssteps = 100 end'); % ...
Coerce value

40 fprintf(obj1, 'vdsstep = (vdsstop - vdsstart) / (vdssteps - 1)'); ...
% step size

41 fprintf(obj1, 'vdssource val = vdsstart'); % Source value during sweep
42 fprintf(obj1, 'l i = 1'); % Iteration variable
43

44 fprintf(obj1, 'if (vgs bias == nil) then vgs bias = 0.5 end'); % ...
Use default value

45 fprintf(obj1, 'if (vgs bias > 3.3) then vgs bias = 3.3 end'); % ...
Coerce value

46

47 % Data tables
48 fprintf(obj1, 'vds = {}'); % Create data table for drain-source ...

voltage
49 fprintf(obj1, 'id = {}'); % Create data table for drain-source current
50 fprintf(obj1, 'vgs = {}'); % Create data table for gate
51

52 % fprintf(obj1, 'smua.reset()'); % Reset SMU drain
53 % fprintf(obj1, 'smub.reset()'); % Reset SMU gate
54 % fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
55

56 % Configure (SMUA) source and measure settings
57 fprintf(obj1, 'smua.source.func = smua.OUTPUT DCVOLTS');
58 fprintf(obj1, 'smua.source.autorangev = smua.AUTORANGE ON'); % ...

Enable source autorange
59 fprintf(obj1, 'smua.source.levelv = 0');
60 fprintf(obj1, 'smua.source.limiti = l icmpl');
61 fprintf(obj1, 'smua.measure.autorangei = smua.AUTORANGE ON'); % ...

Enable measure autorange
62 %fprintf(obj1, 'smua.measure.rangei = 1E-6'); % Enable measure ...

autorange
63 fprintf(obj1, 'smua.measure.autozero = smua.AUTOZERO AUTO');
64 fprintf(obj1, 'smua.measure.nplc = l nplc'); % Measurement ...

integration rate
65 fprintf(obj1, 'smua.source.output = smua.OUTPUT ON'); % Enable Output
66

67 % Configure SMUb gate and measure settings
68 fprintf(obj1, 'smub.source.func = smub.OUTPUT DCVOLTS');
69 fprintf(obj1, 'smub.source.autorangev = smub.AUTORANGE ON'); % ...

Enable source autorange
70 fprintf(obj1, 'smub.source.levelv = 0');
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71 fprintf(obj1, 'smub.source.limiti = l icmpl');
72 fprintf(obj1, 'smub.measure.autorangev = smub.AUTORANGE ON'); % ...

Enable measure autorange
73 fprintf(obj1, 'smub.measure.autozero = smub.AUTOZERO AUTO');
74 fprintf(obj1, 'smub.measure.nplc = l nplc'); % Measurement ...

integration rate
75 fprintf(obj1, 'smub.source.output = smub.OUTPUT ON'); % Enable Output
76 fprintf(obj1, 'smub.source.levelv = vgs bias');
77

78 % Execute sweep
79 fprintf(obj1, 'display.clear()');
80 fprintf(obj1, 'display.screen = 2');
81 fprintf(obj1, ['for l i = 1,vdssteps do ',...
82 'if (l i == 1) then ',...% Intialize start source value
83 'vdssource val = vdsstart ',...
84 'end ' ,...
85 'vgs[l i] = smub.measure.v() ',... % Measure Vgs
86 'id[l i] = smua.measure.i() ',... % Measure Id
87 'vds[l i] = smua.measure.v() ',...
88 'vdssource val = vdssource val + vdsstep ',... % Calculate new ...

source value
89 'if (l i == vdssteps) then ',... % Reinitialize voltage value ...

after last iteration
90 'vdssource val = vdsstart ',...
91 'end ',...
92 'smua.source.levelv = vdssource val ',... % Increment source
93 'end ']);
94

95 fprintf(obj1, 'smua.source.output = smua.OUTPUT OFF'); % Disable ...
output

96 fprintf(obj1, 'smub.source.output = smub.OUTPUT OFF'); % Disable ...
output

97 fprintf(obj1, 'smua.source.levelv = 0'); % Return source to bias level
98 fprintf(obj1, 'smub.source.levelv = 0'); % Return source to bias level
99

100 fprintf(obj1, 'display.clear()');
101 fprintf(obj1, 'display.settext("$BSending Data$B")');
102

103 fprintf(obj1, 'l i = 1'); % Reinitialize iteration variable
104

105 % Loop for data read
106 fprintf(obj1, 'print(vgs bias)');
107 vgsbias(j) = str2num(fscanf(obj1)); %Read data from serial port and ...

assign to var
108

109 for i=1:vdssteps %Loop to print all tables to matlab variables
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110 fprintf(obj1, ['print(id[',num2str(i),']) \n'] );
111 temp2 = fscanf(obj1);
112 temp2 = strtrim(temp2);
113 if strcmp(temp2,'nil') == 1
114 id(j,i) = 0;
115 else
116 id(j,i)= str2num(temp2);
117 end
118

119 fprintf(obj1, ['print(vds[',num2str(i),']) \n'] );
120 temp3 = fscanf(obj1);
121 temp3 = strtrim(temp3);
122 if strcmp(temp3,'nil') == 1
123 vds(j,i) = 0;
124 else
125 vds(j,i)= str2num(temp3);
126 end
127 end
128 end
129

130 %%
131 for i = 1:length(vgsbias)
132 cond(i,:) = diff(id(i,:))./diff(vds(i,:));
133 resist(i,:) = 1./cond(i,:);
134 medianresist(i) = median(resist(i,:));
135 end
136

137 %% Print to Keithley screen and beep complete sequence
138 fprintf(obj1, 'display.clear()');
139 fprintf(obj1, 'display.settext("Test Complete")');
140 fprintf(obj1, 'beeper.beep(0.12, 500)'); %send beeper tone ...

(duration,frequency)
141 fprintf(obj1, 'beeper.beep(0.12, 800)'); %send beeper tone ...

(duration,frequency)
142 fprintf(obj1, 'beeper.beep(0.12, 1000)'); %send beeper tone ...

(duration,frequency)
143 fprintf(obj1, 'beeper.beep(0.12, 2000)'); %send beeper tone ...

(duration,frequency)
144

145 %% Plot Curves
146 figure();
147 plot (vds(3,:),id(3,:),vds(4,:),id(4,:),vds(5,:),id(5,:),vds(6,:),id(6,:),
148 vds(7,:),id(7,:),vds(8,:),id(8,:));
149 set(gca,'fontsize',14);
150 set(gcf, 'color', 'w');
151 grid on;
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152 legend([num2str(vgsbias(3)),' Vgs'],[num2str(vgsbias(4)),' ...
Vgs'],[num2str(vgsbias(5)),' Vgs'],[num2str(vgsbias(6)),' ...
Vgs'],[num2str(vgsbias(7)),' Vgs'],[num2str(vgsbias(8)),' Vgs']);

153 set(legend,...
154 'Position',[0.215939049121225 0.582099669520804 0.116189725101397 ...

0.286929172299835]);
155 title('MOSFET Family of Curves');
156 xlabel('Drain Voltage, Vds (V)');
157 ylabel('Drain Current, Id (A)');
158 mkdir([foldername]);
159 print('-dpng', [foldername,'\familyofcurves2.png']);
160

161 %% Plot Curves
162 figure();
163 plot (vds(1,:),id(1,:),vds(2,:),id(2,:),vds(3,:),id(3,:));
164 set(gca,'fontsize',14);
165 set(gcf, 'color', 'w');
166 grid on;
167 legend([num2str(vgsbias(1)),' Vgs'],[num2str(vgsbias(2)),' ...

Vgs'],[num2str(vgsbias(3)),' Vgs']);
168 set(legend,...
169 'Position',[0.215939049121225 0.582099669520804 0.116189725101397 ...

0.286929172299835]);
170 title('MOSFET Family of Curves');
171 xlabel('Drain Voltage, Vds (V)');
172 ylabel('Drain Current, Id (A)');
173 mkdir([foldername]);
174 print('-dpng', [foldername,'\familyofcurves.png']);
175

176 %% Single Conductance
177 marker = 3;
178 figure();
179 plot(vds(2,1:length(vds)-1), cond(marker,:),'-*');
180 hold on;
181 hline = refline(0,median(cond(marker,:)));
182 set(hline,'Color','r')
183 set(gca,'fontsize',14);
184 set(gcf, 'color', 'w');
185 grid on;
186 %xlim([0 2]);
187 legend(['Conductance @ Vgs = ',num2str(vgsbias(marker)),' V'],['Median ...

= ',num2str(median(cond(marker,:)))]);
188 title('Conductance of the Channel');
189 ylabel('Channel Conductance (dId/dVds)');
190 xlabel('Drain Voltage, Vds (V)');
191 print('-dpng', [foldername,'\conductance1.png']);
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192

193 %% Single Resistance
194 figure();
195 plot(vds(2,1:length(vds)-1), resist(marker,:),'-*');
196 hold on;
197 hline = refline(0,median(resist(marker,:)));
198 set(hline,'Color','r')
199 set(gca,'fontsize',14,'yscale','log');
200 set(gcf, 'color', 'w');
201 grid on;
202 %xlim([0 2]);
203 legend(['Resistance @ Vgs = ',num2str(vgsbias(marker)),' V'],['Median = ...

',num2str(median(resist(marker,:)))]);
204 title('Resistance of the Channel');
205 ylabel('Channel Resistance (Ohms) (dVds/dId)');
206 xlabel('Drain Voltage, Vds (V)');
207 print('-dpng', [foldername,'\resistance1.png']);
208

209 %% Median Resistance vs Vgs
210 figure();
211 plot(vgsbias, medianresist,'-*');
212 hold on;
213 %hline = refline(0,median(resist(marker,:)));
214 %set(hline,'Color','r')
215 set(gca,'fontsize',14,'yscale','log');
216 set(gcf, 'color', 'w');
217 xlabel('Gate Voltage, Vgs (V)');
218 ylabel('Median Resistance of Channel (Ohms)');
219 title('Median Resistance of Channel vs. Vgs');
220 grid on;
221 print('-dpng', [foldername,'\medianresist.png']);
222

223 %% Multi Resistance
224 figure();
225 x=vds(2,1:length(vds)-1);
226 plot(x, resist(1,:),'-*',x, resist(2,:),'-*',x, resist(3,:),'-*',x, ...

resist(5,:),'-*',x, resist(10,:),'-*',x, resist(15,:),'-*');
227 hold on;
228 set(gca,'fontsize',14,'yscale','log');
229 set(gcf, 'color', 'w');
230 grid on;
231 legend(['Vgs = ',num2str(vgsbias(1))],['Vgs = ...

',num2str(vgsbias(2))],['Vgs = ',num2str(vgsbias(3))],['Vgs = ...
',num2str(vgsbias(5))],['Vgs = ',num2str(vgsbias(10))],['Vgs = ...
',num2str(vgsbias(15))])'

232 title('Resistance of the Channel');

124



C. MATLAB Test Scripts

233 ylabel('Channel Resistance (Ohms) (dVds/dId)');
234 xlabel('Drain Voltage, Vds (V)');
235 print('-dpng', [foldername,'\multiresist.png']);
236

237 %% Reset Keithley & Save Data
238 save([foldername,'/drainsweep.mat']);
239 fprintf(obj1, '*RST'); %command to reset the keithley
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C.6. Terahertz Detection Scripts

fixedId sweepvgs measurevds.m

1 %% Chopper Detect
2 % This script sweeps the gate voltage for a fixed drain current bias and
3 % measures the source drain voltage.
4

5 clearvars -except obj1 k testnum;
6 testnum=testnum+1;
7

8 % Timing Variables
9 cd '/Users/gfertig/Dropbox/Thesis/THz Project/Testing/20140227 Test Data'

10 foldername = ['URFri/',num2str(testnum),'-BT-T5-S-RTSNoise-NoShutter'];
11 chopperfreq = 30; %Hz - For plots
12 nplc = .1; % Integration rate of measurement 1,.1,.01,.001 (0.001 finest)
13 measnum = 3000; %Number of submeasurements per set (gate gate voltage ...

instance)
14 measinterval = 0.000; %Keithley delay BETWEEN submeasurements
15 measdelay = 0.000; %Keithley delay BEFORE a set of measurements occurs
16 shutterdelay = 0.000; % Delay (s) for shutter full open
17

18 % Matlab Variables
19 idbias = 6E-6; % (A) Drain Bias Current
20 vgssteps = 1; %Number of steps for Vgs sweep %Max ...

vgssteps*measnum=10000 for measnum=1000 is 10
21 vgsstart = 0.62; %Start Voltage for Vgs sweep
22 vgsstop = 0.62; %Stop Voltage for Vgs sweep
23 stepsize = (vgsstop - vgsstart) / (vgssteps); %Calculate sweep step size
24

25 vrangeg = 6; %gate
26 vranged = 6; %Voltage source range: 100mV, 1V, 6V, 40V
27 irange = 100E-6; % Current source range: 100nA, 1uA, 100uA, 1mA, 10mA, ...

100mA, 1A, 3A
28 %irange = 100E-9; % Current source range: 100nA, 1uA, 100uA, 1mA, 10mA, ...

100mA, 1A, 3A
29 vlimit = 40; %Voltage limit
30 ilimit = 10E-3; %Current limit
31

32 buffappend = 1; %'0' tells the buffers to overwrite for each set of ...
measurements, '1' appends

33 filespecifier = ...
['CH',num2str(chopperfreq),' STP',num2str(vgssteps),' MEAS',

34 num2str(measnum),' NPLC',num2str(nplc),' Id',num2str(idbias)];
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35 %% Reset Keithley
36 fprintf(obj1, '*RST'); %command to reset the keithley
37 fprintf(obj1, 'smua.reset()'); % Reset SMU
38 fprintf(obj1, 'smub.reset()'); % Reset SMU
39 fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
40

41 %Display and Beep Sequence
42 fprintf(obj1, 'display.clear()');
43 fprintf(obj1, 'display.settext("$BTest in Progess$B")');
44 fprintf(obj1, 'beeper.beep(0.1, 500)'); %send beeper tone ...

(duration,frequency)
45 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
46

47 %Digio reset
48 fprintf(obj1, ['digio.writebit(2,1) ']); %Set digio bit 2 to High for ...

shutter open
49 pause(shutterdelay);
50 fprintf(obj1, ['digio.writebit(2,0) ']); %Set digio bit 2 to Low for ...

shutter close
51

52

53 %% Configure Sources
54 % Source A Configuration - Drain
55 fprintf(obj1, ['smua.source.func = smua.OUTPUT DCAMPS']); %Select ...

current source function
56 fprintf(obj1, ['smua.source.rangei = ',num2str(irange)]); % Set source ...

function range (lowest for Voltmeter)
57 fprintf(obj1, ['smua.source.limiti = ',num2str(ilimit)]); %Set current ...

limit
58 fprintf(obj1, ['smua.source.limitv = ',num2str(vlimit)]); %Set voltage ...

limit
59 fprintf(obj1, ['smua.source.leveli = 0']); %Set source current to 0 to ...

start
60

61 % Source B Configuration - Gate
62 fprintf(obj1, ['smub.source.func = smub.OUTPUT DCVOLTS']);
63 fprintf(obj1, ['smub.source.rangev = ',num2str(vrangeg)]); % Set ...

source range
64 fprintf(obj1, ['smub.source.limitv = ',num2str(vlimit)]); %Set voltage ...

limit
65 fprintf(obj1, ['smub.source.limiti = ',num2str(ilimit)]); %Setcurrent limit
66 fprintf(obj1, ['smub.source.levelv = 0']); %Set source voltage to 0 to ...

start
67

68 %% Configure Measurements & Buffers
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69

70 % SMUA Measurement Settings - Drain (Measuring Voltage)
71 fprintf(obj1, 'smua.measure.autozero = smua.AUTOZERO ONCE');
72 fprintf(obj1, ['smua.measure.rangev = ',num2str(vranged)]); % Set ...

Voltmeter range
73 fprintf(obj1, ['smua.measure.nplc = ',num2str(nplc)]); % Measurement ...

integration rate
74 fprintf(obj1, ['smua.measure.count = ',num2str(measnum)]); % Number of ...

measurements to collect.
75 fprintf(obj1, ['smua.measure.delay = ',num2str(measdelay)]); % Set the ...

delay before the first measurement
76 fprintf(obj1, ['smua.measure.interval = ',num2str(measinterval)]); % ...

Set the delay between measurements
77

78 %SMUA Buffer 1 - Stores drain voltage
79 fprintf(obj1, 'smua.nvbuffer1.clear() '); % Clears the buffer
80 fprintf(obj1,'smua.nvbuffer1.collecttimestamps = 1 '); % Enables ...

timestamp collect
81 fprintf(obj1, ['smua.nvbuffer1.appendmode = ',num2str(buffappend)]); ...

%Overwrites previous measurements in buffer
82 fprintf(obj1,'smua.nvbuffer1.timestampresolution = 0.000001 '); %Sets ...

timestamp resultion to the 1us (finest)
83

84 %SMUA Buffer 2 - Stores drain current
85 fprintf(obj1, 'smua.nvbuffer2.clear() '); % Clears the buffer
86 fprintf(obj1,'smua.nvbuffer2.collecttimestamps = 1 '); % Enables ...

timestamp collect
87 fprintf(obj1, ['smua.nvbuffer2.appendmode = ',num2str(buffappend)]); ...

%Overwrites previous measurements in buffer
88 fprintf(obj1,'smua.nvbuffer2.timestampresolution = 0.000001 '); %Sets ...

timestamp resultion to the 1us (finest)
89

90 %SMUB Measurement Settings - Gate (Measuring Voltage)
91 fprintf(obj1, 'smub.measure.autozero = smub.AUTOZERO ONCE');
92 fprintf(obj1, ['smub.measure.nplc = ',num2str(nplc)]); % Measurement ...

integration rate
93 fprintf(obj1, ['smub.measure.rangev = ',num2str(vrangeg)]); % Set ...

measure range
94 fprintf(obj1, ['smub.measure.count = ',num2str(measnum)]); % Number of ...

measurements to collect.
95 fprintf(obj1, ['smub.measure.delay = ',num2str(measdelay)]); % Set the ...

delay before the first measurement
96 fprintf(obj1, ['smub.measure.interval = ',num2str(measinterval)]); % ...

Set the delay between measurements
97

98 %SMUB Buffer 1
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99 fprintf(obj1, 'smub.nvbuffer1.clear() '); % Clears the buffer
100 fprintf(obj1,'smub.nvbuffer1.collecttimestamps = 1 '); % Enables ...

timestamp collect
101 fprintf(obj1, ['smub.nvbuffer1.appendmode = ',num2str(buffappend)]); ...

%Overwrites previous measurements in buffer
102 fprintf(obj1,'smub.nvbuffer1.timestampresolution = 0.000001 '); %Sets ...

timestamp resultion to the 1us (finest)
103

104

105 %% Execute sweep
106 fprintf(obj1, 'display.clear()');
107 fprintf(obj1, 'display.screen = 2');
108

109 vgsloop = vgsstart;
110 fprintf(obj1, ['vgsloop = ',num2str(vgsstart)]);
111 fprintf(obj1, ['stepsize = ',num2str(stepsize)]);
112 fprintf(obj1, ['loopend = 0']);
113 fprintf(obj1, ['loopcheck = ',num2str(vgsstop-stepsize)]);
114

115 fprintf(obj1, ['smua.source.output = smua.OUTPUT ON ']); ...
%Measure w/shutter closed

116 fprintf(obj1, ['smub.source.output = smub.OUTPUT ON ']); ,... ...
%Enable Output

117 fprintf(obj1, ['smub.source.levelv = vgsloop ']); %Set gate voltage
118 fprintf(obj1, ['smua.source.leveli = ',num2str(idbias),' ']); %Set ...

drain bias voltage
119 fprintf(obj1, ['delay(2) ']); ,... %Enable Output
120

121 fprintf(obj1, ['for i = 1,',num2str(vgssteps),'do ',...
122 'smub.source.levelv = vgsloop ',... %Set gate voltage
123 'smua.source.leveli = ',num2str(idbias),' ',... ...

%Set drain bias voltage
124 'smua.source.output = smua.OUTPUT ON ',... ...

%Measure w/shutter closed
125 'smub.source.output = smub.OUTPUT ON ',... ...

%Enable Output
126 'waitcomplete() ',...
127 'smub.measure.v(smub.nvbuffer1) ',... ...

%Measure gate voltage
128 'smua.measure.v(smua.nvbuffer1) ',... ...

%Measure drain voltage
129 'smua.measure.i(smua.nvbuffer2) ',... ...

%Measure drain current
130 'waitcomplete() ',... ...

%Measure w/shutter open
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131 'digio.writebit(2,1) ',... ...
%Set digio bit 2 to High for shutter open

132 'delay(',num2str(shutterdelay),') ',...
133 'smub.measure.v(smub.nvbuffer1) ',... ...

%Measure gate voltage
134 'smua.measure.v(smua.nvbuffer1) ',... ...

%Measure drain voltage
135 'smua.measure.i(smua.nvbuffer2) ',... ...

%Measure drain current
136 'waitcomplete() ',...
137 'smua.source.output = smua.OUTPUT OFF ',... ...

%Disable output
138 'smub.source.output = smub.OUTPUT OFF ',... ...

%Disable output
139 'digio.writebit(2,0) ',... ...

%Set digio bit 2 to Low for shutter close
140 'vgsloop = vgsloop + stepsize ',... ...

%Increment loop
141 'if (vgsloop == loopcheck) then loopend = 1 end ',...
142 'end ']);
143 loopend = 0;
144 while loopend == 0
145 fprintf(obj1, 'print(loopend)'); %check the loopend variable
146 loopend = fscanf(obj1);
147 %pause(.1);
148 end
149 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
150

151 %% Retrieve data from keithley
152 fprintf(obj1, 'display.clear()');
153 fprintf(obj1, 'display.settext("$BSending Data$B")');
154

155 fprintf(obj1, 'print(smub.nvbuffer1.basetimestamp)'); % print the ...
timestamp of the buffer

156 temp = fscanf(obj1);
157 vgsbuffbasetime=str2num(temp);
158 clear temp;
159 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
160

161 fprintf(obj1, 'printbuffer(1,smub.nvbuffer1.n,smub.nvbuffer1.readings)');
162 temp = fscanf(obj1);
163 vgsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
164 clear temp;
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165 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...
(duration,frequency)

166

167 fprintf(obj1, 'printbuffer(1,smub.nvbuffer1.n,smub.nvbuffer1.timestamps)');
168 temp = fscanf(obj1);
169 vgsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
170 clear temp;
171 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
172

173 fprintf(obj1, 'print(smua.nvbuffer1.basetimestamp)');
174 temp = fscanf(obj1);
175 vdsbuffbasetime=str2num(temp);
176 clear temp;
177 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
178

179 fprintf(obj1, 'printbuffer(1,smua.nvbuffer1.n,smua.nvbuffer1.readings)');
180 temp = fscanf(obj1);
181 vdsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
182 clear temp;
183 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
184

185 fprintf(obj1, 'printbuffer(1,smua.nvbuffer1.n,smua.nvbuffer1.timestamps)');
186 temp = fscanf(obj1);
187 vdsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
188 clear temp;
189 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
190

191 fprintf(obj1, 'print(smua.nvbuffer2.basetimestamp)');
192 temp = fscanf(obj1);
193 idsbuffbasetime=str2num(temp);
194 clear temp;
195 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
196

197 fprintf(obj1, 'printbuffer(1,smua.nvbuffer2.n,smua.nvbuffer2.readings)');
198 temp = fscanf(obj1);
199 idsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
200 clear temp;
201 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
202

203 fprintf(obj1, 'printbuffer(1,smua.nvbuffer2.n,smua.nvbuffer2.timestamps)');
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204 temp = fscanf(obj1);
205 idsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
206 clear temp;
207 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
208

209 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...
(duration,frequency)

210

211 %% Print to Keithley screen and beep complete sequence
212 fprintf(obj1, 'display.clear()');
213 fprintf(obj1, 'display.settext("Test Complete")');
214 fprintf(obj1, 'beeper.beep(0.12, 500)'); %send beeper tone ...

(duration,frequency)
215 fprintf(obj1, 'beeper.beep(0.12, 800)'); %send beeper tone ...

(duration,frequency)
216 fprintf(obj1, 'beeper.beep(0.12, 1000)'); %send beeper tone ...

(duration,frequency)
217 fprintf(obj1, 'beeper.beep(0.12, 2000)'); %send beeper tone ...

(duration,frequency)
218

219 %% Data Reduction
220 vgsmeastime = vgsbufftime+vgsbuffbasetime; %Add the basetime to each ...

measurement time
221 vdsmeastime = vdsbufftime+vdsbuffbasetime;
222 idsmeastime = idsbufftime+idsbuffbasetime;
223

224 %take the buffers, average and split
225 vgsbuffmeas(1) = vgsbuffmeas(2); % Replace first entry due to Keithley ...

error on first measurement
226 vdsbuffmeas(1) = vdsbuffmeas(2);
227 idsbuffmeas(1) = idsbuffmeas(2);
228

229 %Reduce data for open and closed shutter measurements
230 %creates and open and closed vector from the read buffer which correspond
231 %to each pair of measurements.
232 j=1;
233 for i=1:vgssteps
234 vgsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vgsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
235 vdsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vdsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
236 idsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

idsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
237 vgsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vgsbufftime(((j*measnum)-measnum+1):(j*measnum));
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238 vdsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vdsbufftime(((j*measnum)-measnum+1):(j*measnum));

239 idsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
idsbufftime(((j*measnum)-measnum+1):(j*measnum));

240 j=j+1;
241

242 vgsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vgsbuffmeas(((j*measnum)-measnum+1):(j*measnum));

243 vdsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vdsbuffmeas(((j*measnum)-measnum+1):(j*measnum));

244 idsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
idsbuffmeas(((j*measnum)-measnum+1):(j*measnum));

245 vgsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vgsbufftime(((j*measnum)-measnum+1):(j*measnum));

246 vdsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vdsbufftime(((j*measnum)-measnum+1):(j*measnum));

247 idsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
idsbufftime(((j*measnum)-measnum+1):(j*measnum));

248 j=j+1;
249 end
250 vgsdiff = vgsopen-vgsclosed;
251 vdsdiff = vdsopen-vdsclosed;
252 idsdiff = idsopen-idsclosed;
253

254 %FFT of signals
255 for i=1:measnum-1
256 closedtimediff(i)=vdsclosedtime(i+1)-vdsclosedtime(i);
257 end
258 NFFT = 2ˆnextpow2(measnum); % Next power of 2 from length of y
259 Fs = 1/mean(closedtimediff);
260 f = (0:NFFT/2-1)*Fs/NFFT;
261 for i=1:vgssteps
262 tempfft = fft(vdsclosed(((i-1)*measnum+1):(i*measnum))-mean(vdsclosed(
263 ((i-1)*measnum+1):(i*measnum))),NFFT)/NFFT; %Mean subtracted
264 tempfft = tempfft(1:NFFT/2);
265 vdsclosedfft(i,:) = abs(tempfft);
266 clear tempfft;
267 tempfft = fft(vdsopen(((i-1)*measnum+1):(i*measnum))-mean(vdsopen(
268 ((i-1)*measnum+1):(i*measnum))),NFFT)/NFFT; %Mean subtracted
269 tempfft = tempfft(1:NFFT/2);
270 vdsopenfft(i,:) = abs(tempfft);
271 vdsfftdiff(i,:) = vdsopenfft(i,:)-vdsclosedfft(i,:);
272 clear tempfft;
273 end
274 [fftmaxdiff(1,:),fftmaxdiff(2,:)] = max(vdsopenfft(:,25:NFFT/2),[],2);
275 fftmaxdiff(2,:)=fftmaxdiff(2,:)+25;
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276 %if measnum > 1
277 for i=1:(vgssteps)
278 vgsavgmeasclosed(i) = ...

mean(vgsclosed(((i*measnum)-(measnum-1)):i*measnum)); ...
%Averages the submeasurements for each vgs step

279 vdsavgmeasclosed(i) = ...
mean(vdsclosed(((i*measnum)-(measnum-1)):i*measnum));

280 idsavgmeasclosed(i) = ...
mean(idsclosed(((i*measnum)-(measnum-1)):i*measnum));

281 vgsavgmeasopen(i) = ...
mean(vgsopen(((i*measnum)-(measnum-1)):i*measnum)); ...
%Averages the submeasurements for each vgs step

282 vdsavgmeasopen(i) = ...
mean(vdsopen(((i*measnum)-(measnum-1)):i*measnum));

283 idsavgmeasopen(i) = ...
mean(idsopen(((i*measnum)-(measnum-1)):i*measnum));

284 vgsavgmeasdiff(i) = ...
mean(vgsdiff(((i*measnum)-(measnum-1)):i*measnum)); ...
%Averages the submeasurements for each vgs step

285 vdsavgmeasdiff(i) = ...
mean(vdsdiff(((i*measnum)-(measnum-1)):i*measnum));

286 idsavgmeasdiff(i) = ...
mean(idsdiff(((i*measnum)-(measnum-1)):i*measnum));

287 end
288 %end
289 %% Plots
290 mkdir([foldername]);
291 %Plots the average for each series of submeasurements
292 figure(1);
293 idvar = 1E-7;
294 [AX,H1,H2] = ...

plotyy(vgsavgmeasclosed,vdsavgmeasclosed,vgsavgmeasclosed,idsavgmeasclosed);
295 set(AX(1),'fontsize',14,'Position',[0.12 0.17 0.72 0.72]);
296 set(AX(2),'xtick',[],'YLim',[(idbias-idvar) (idbias+idvar)],'fontsize',14);
297 set(H1,'marker','*');
298 set(H2,'marker','*');
299 set(get(AX(1),'Ylabel'),'String','Avg Source-Drain Voltage, Vds ...

(V)','fontsize',14) ;
300 set(get(AX(2),'Ylabel'),'String','Avg Source-Drain Current, Id ...

(A)','fontsize',14) ;
301 set(gcf, 'color', 'w');
302 %xlim([vgsstart vgsstop]);
303 title(['Vgs Sweep (Avg of ',num2str(measnum),' Measurements; Id = ...

',num2str(idbias),' A); Shutter Closed']);
304 xlabel('Gate Voltage, Vgs (V)');
305 grid on;
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306 print('-dpng', [foldername,'\',filespecifier,'-avgsclosed.png']);
307 %%
308 %Plots the average for each series of submeasurements
309 figure(2);
310 [AX,H1,H2] = ...

plotyy(vgsavgmeasopen,vdsavgmeasopen,vgsavgmeasopen,idsavgmeasopen);
311 set(AX(1),'fontsize',14,'Position',[0.12 0.17 0.72 0.72]);
312 set(AX(2),'xtick',[],'YLim',[(idbias-idvar) (idbias+idvar)],'fontsize',14);
313 set(H1,'marker','*');
314 set(H2,'marker','*');
315 set(get(AX(1),'Ylabel'),'String','Avg Source-Drain Voltage, Vds ...

(V)','fontsize',14) ;
316 set(get(AX(2),'Ylabel'),'String','Avg Source-Drain Current, Id ...

(A)','fontsize',14) ;
317 set(gcf, 'color', 'w');
318 title(['Vgs Sweep (Avg of ',num2str(measnum),' Measurements; Id = ...

',num2str(idbias),' A); Shutter Open']);
319 xlabel('Gate Voltage, Vgs (V)');
320 grid on;
321 print('-dpng', [foldername,'\',filespecifier,'-avgsopen.png']);
322 %%
323 %Plots vds measurements vs time; chopper overlayed for reference
324 figure(3);
325 t=vdsmeastime(1):.0001:vdsmeastime(length(vdsmeastime));
326 chopperwave = ...

mean(vdsbuffmeas)+0.2*max(vdsbuffmeas)*square(2*pi*chopperfreq*t);
327 %plot(vdsmeastime,vdsbuffmeas,'*',t,chopperwave);
328 plot(vdsmeastime,vdsbuffmeas,'-*');
329 xlabel('Time (s)');
330 ylabel('Source-Drain Voltage (V)');
331 title('Source-Drain Voltage (V) vs Time (s)');
332 set(gca,'fontsize',14);
333 set(gcf, 'color', 'w');
334 grid on;
335 print('-dpng', [foldername,'\',filespecifier,'-vds-time.png']);
336 %%
337 %Plots ids measurements vs time; chopper overlayed for reference
338 % figure(4);
339 % t=idsmeastime(1):.0001:idsmeastime(length(idsmeastime));
340 % chopperwave = ...

mean(idsbuffmeas)+0.1*mean(idsbuffmeas)*square(2*pi*chopperfreq*t);
341 % %plot(idsmeastime,idsbuffmeas,'*',t,chopperwave);
342 % plot(idsmeastime,idsbuffmeas,'*');
343 % set(gca,'fontsize',14);
344 % set(gcf, 'color', 'w');
345 % grid on;
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346 % xlabel('Time (s)');
347 % ylabel('Source-Drain Current (A)');
348 % title('Source-Drain Current (A) vs Time (s)');
349 % print('-dpng', [foldername,'\',filespecifier,'-ids-time.png']);
350

351 %%
352 %Plots vds difference vs vgs;
353 figure(5);
354 plot(vgsopen,vdsdiff,'*');
355 set(gca,'fontsize',14);
356 set(gcf, 'color', 'w');
357 xlabel('Gate Voltage, Vgs (V)');
358 ylabel('Source-Drain Voltage Difference (V)');
359 title('Source-Drain Voltage Difference (V) vs Vgs (s)');
360 grid on;
361 print('-dpng', [foldername,'\',filespecifier,'-vdsdiffvgs.png']);
362 %%
363 %Plots vds difference vs time;
364 % figure(6);
365 % plot(vdsopentime,vdsdiff,'*');
366 % set(gca,'fontsize',14);
367 % set(gcf, 'color', 'w');
368 % xlabel('Time (s)');
369 % ylabel('Source-Drain Voltage Difference (V)');
370 % title('Source-Drain Voltage Difference (V) vs Time');
371 % grid on;
372 % print('-dpng', [foldername,'\',filespecifier,'-vdsdifftime.png']);
373 %%
374 %Plots avg vds difference vs vgs;
375 figure(7);
376 plot(vgsavgmeasopen,vdsavgmeasdiff,'-*');
377 set(gca,'fontsize',14);
378 set(gcf, 'color', 'w');
379 xlabel('Gate Voltage, Vgs (V)');
380 ylabel('Source-Drain Voltage Difference (V)');
381 title('Avg Source-Drain Voltage Difference (V) vs Vgs (V)');
382 grid on;
383 %print('-dpng', [foldername,'\',filespecifier,'-vdsavgdiffvgs.png']);
384 print('-dpng', [foldername,'\vdsavgdiff.png']);
385 %%
386 %Plots fft of vds open and closed;
387 figure(8);
388 plot(f(2:length(f)),vdsclosedfft(2:length(vdsclosedfft)),f(2:length(f)),
389 vdsopenfft(2:length(vdsopenfft))); %No DC
390 set(gca,'fontsize',14);
391 set(gcf, 'color', 'w');
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392 legend('Shutter Closed','Shutter Open');
393 xlabel('Frequency (Hz)');
394 ylabel(' |Vds |');
395 title('FFT of Vds');
396 grid on;
397 %ylim([-0E-3 1E-3]);
398 %xlim([0 50]);
399 print('-dpng', [foldername,'\',filespecifier,'-vdsfft.png']);
400 %%
401 %Plots fft of vds open and closed;
402 figure(9);
403 clf(9);
404 cc=hsv(vgssteps);
405 hold on;
406 for i=1:vgssteps
407 plot(f(2:length(f)),vdsfftdiff(i,2:length(vdsfftdiff)),'color',cc(i,:)); ...

%No DC
408 end
409 hold off;
410 set(gca,'fontsize',14);
411 set(gcf, 'color', 'w');
412 xlabel('Frequency (Hz)');
413 ylabel(' |Vds |');
414 title('Difference of FFT Open/Closed Shutter of Vds');
415 grid on;
416 %ylim([-0E-3 1E-5]);
417 %xlim([825 875]);
418 legendmatrix=cellstr(num2str(vgsavgmeasopen(1:vgssteps)','Vgs = %f'));
419 legend(legendmatrix);
420 print('-dpng', [foldername,'\',filespecifier,'-vdsfftdiff.png']);
421 %%
422 %Plots fft of vds open and closed;
423 figure(10);
424 plot(vgsavgmeasopen,fftmaxdiff(1,:),'-*');
425 labels = cellstr( num2str(fftmaxdiff(2,:)') ); %' # labels correspond ...

to their order
426 text(vgsavgmeasopen,fftmaxdiff(1,:), labels, ...

'VerticalAlignment','bottom', ...
427 'HorizontalAlignment','right')
428 set(gca,'fontsize',14);
429 set(gcf, 'color', 'w');
430 xlabel('Vgs (V)');
431 ylabel('Max( |Vds |)');
432 title('Maximum of Vds FFT Difference vs Gate Voltage (Max Freq Noted)');
433 grid on;
434 print('-dpng', [foldername,'\',filespecifier,'-vdsfftmaxdiff.png']);
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435 %% Make a wave to compare expected fft
436 t=vdsclosedtime(1):1/Fs:vdsclosedtime(length(vdsclosedtime));
437 %chopperwave = ...

mean(vdsclosed)+range(vdsclosed)*square(2*pi*chopperfreq*t); %shifted
438 chopperwave = square(2*pi*chopperfreq*t); %shifted
439 NFFT = 2ˆnextpow2(length(chopperwave)); % Next power of 2 from length ...

of y
440 %Fs = chopperfreq;
441 f = (0:NFFT/2-1)*Fs/NFFT;
442 sqwvfft = fft(chopperwave,NFFT)/NFFT;
443 sqwvfft = sqwvfft(1:NFFT/2);
444 sqwvfft = abs(sqwvfft);
445 figure(11);
446 subplot(2,1,1); plot(t,chopperwave); xlim([0 1/chopperfreq]); ...

xlabel('Time (s)');
447 subplot(2,1,2); plot(f(2:length(f)),sqwvfft(2:length(sqwvfft))); ...

xlabel('Freq (Hz)');%No DC
448 print('-dpng', [foldername,'\',filespecifier,'-synfft.png']);
449 %% Reset Keithley & Save Data
450 save([foldername,'/',filespecifier,'.mat']);
451 fprintf(obj1, '*RST'); %command to reset the keithley
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fixedvgs sweepvds measureId.m

1 %% Fixed Vgs Sweep Vds - Source Gate Voltage and Drain Voltage, Measure ...
Drain Current

2 % This script sweeps the drain voltage for a fixed gate voltage bias and
3 % measures the source drain current.
4

5 %close all;
6 %for z=1:10
7 clearvars -except obj1 k testnum;
8 testnum=testnum+1;
9

10 % Timing Variables
11 cd '/Users/gfertig/Dropbox/Thesis/THz Project/Testing/20140307 Test Data'
12 foldername = [num2str(testnum),'-Old-Chip2-T2-B-Vdsswp-Paul'];
13 chopperfreq = 1; %Hz - For plots
14 nplc = .1; % Integration rate of measurement 1,.1,.01,.001 (0.001 finest)
15 measnum = 100; %Number of submeasurements per set ()
16 measinterval = 0.000; %Keithley delay BETWEEN submeasurements
17 measdelay = 0.000; %Keithley delay BEFORE a set of measurements occurs
18 shutterdelay = 0.000; % Delay (s) for shutter full open
19

20 % Gate Loop Variables
21 vgsbias = .48; %Fixed bias voltage for Vds
22 vdssteps = 25; %Number of steps for Vgs sweep %Max ...

vgssteps*measnum=10000 for measnum=1000 is 10
23 vdsstart = 0; %Start Voltage for Vgs sweep
24 vdsstop = 3; %Stop Voltage for Vgs sweep
25 stepsize = (vdsstop - vdsstart) / (vdssteps); %Calculate sweep step size
26

27 vrange = 6; %Voltage source range: 100mV, 1V, 6V, 40V
28 irange = 100E-6; % Current source range: 100nA, 1uA, 100uA, 1mA, 10mA, ...

100mA, 1A, 3A
29 %irange = 100E-9; % Current source range: 100nA, 1uA, 100uA, 1mA, 10mA, ...

100mA, 1A, 3A
30 vlimit = 10; %Voltage limit
31 ilimit = 10E-3; %Current limit
32

33 buffappend = 1; %'0' tells the buffers to overwrite for each set of ...
measurements, '1' appends

34 filespecifier = ...
['MeasId SwpVds CH',num2str(chopperfreq),' MEAS',num2str(measnum),' NPLC',

35 num2str(nplc),' VgsBias',num2str(vgsbias)];
36 %% Reset Keithley
37 fprintf(obj1, '*RST'); %command to reset the keithley
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38 fprintf(obj1, 'smua.reset()'); % Reset SMU
39 fprintf(obj1, 'smub.reset()'); % Reset SMU
40 fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
41

42 %Display and Beep Sequence
43 fprintf(obj1, 'display.clear()');
44 fprintf(obj1, 'display.settext("$BTest in Progess$B")');
45 fprintf(obj1, 'beeper.beep(0.1, 500)'); %send beeper tone ...

(duration,frequency)
46 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
47

48 %Digio reset
49 fprintf(obj1, ['digio.writebit(2,1) ']); %Set digio bit 2 to High for ...

shutter open
50 pause(shutterdelay);
51 fprintf(obj1, ['digio.writebit(2,0) ']); %Set digio bit 2 to Low for ...

shutter close
52 %% Configure Sources
53 % Source A Configuration - Drain
54 fprintf(obj1, ['smua.source.func = smua.OUTPUT DCVOLTS']); %Select ...

voltage source
55 fprintf(obj1, ['smua.source.rangev = ',num2str(vrange)]); % Set source ...

function range
56 fprintf(obj1, ['smua.source.limiti = ',num2str(ilimit)]); %Set current ...

limit
57 fprintf(obj1, ['smua.source.limitv = ',num2str(vlimit)]); %Set voltage ...

limit
58 fprintf(obj1, ['smua.source.levelv = 0']); %Set source voltage to 0 to ...

start
59

60 % Source B Configuration - Gate
61 fprintf(obj1, ['smub.source.func = smub.OUTPUT DCVOLTS']);
62 %fprintf(obj1, ['smub.source.autorangev = smub.AUTORANGE ON']); % ...

Enable source autorange
63 fprintf(obj1, ['smub.source.rangev = ',num2str(vrange)]); % Set source ...

range
64 fprintf(obj1, ['smub.source.limitv = ',num2str(vlimit)]); %Set voltage ...

limit
65 fprintf(obj1, ['smub.source.limiti = ',num2str(ilimit)]); %Setcurrent limit
66 fprintf(obj1, ['smub.source.levelv = 0']); %Set source voltage to 0 to ...

start
67 %% Configure Measurements & Buffers
68

69 % SMUA Measurement Settings - Drain (Measuring Current)
70 fprintf(obj1, 'smua.measure.autozero = smua.AUTOZERO ONCE');
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71 fprintf(obj1, ['smua.measure.rangei = ',num2str(irange)]); % Set ...
current range

72 fprintf(obj1, ['smua.measure.nplc = ',num2str(nplc)]); % Measurement ...
integration rate

73 fprintf(obj1, ['smua.measure.count = ',num2str(measnum)]); % Number of ...
measurements to collect.

74 fprintf(obj1, ['smua.measure.delay = ',num2str(measdelay)]); % Set the ...
delay before the first measurement

75 fprintf(obj1, ['smua.measure.interval = ',num2str(measinterval)]); % ...
Set the delay between measurements

76

77 %SMUA Buffer 1 - Stores drain voltage
78 fprintf(obj1, 'smua.nvbuffer1.clear() '); % Clears the buffer
79 fprintf(obj1,'smua.nvbuffer1.collecttimestamps = 1 '); % Enables ...

timestamp collect
80 fprintf(obj1, ['smua.nvbuffer1.appendmode = ',num2str(buffappend)]); ...

%Overwrites previous measurements in buffer
81 fprintf(obj1,'smua.nvbuffer1.timestampresolution = 0.000001 '); %Sets ...

timestamp resultion to the 1us (finest)
82

83 %SMUA Buffer 2 - Stores drain current
84 fprintf(obj1, 'smua.nvbuffer2.clear() '); % Clears the buffer
85 fprintf(obj1,'smua.nvbuffer2.collecttimestamps = 1 '); % Enables ...

timestamp collect
86 fprintf(obj1, ['smua.nvbuffer2.appendmode = ',num2str(buffappend)]); ...

%Overwrites previous measurements in buffer
87 fprintf(obj1,'smua.nvbuffer2.timestampresolution = 0.000001 '); %Sets ...

timestamp resultion to the 1us (finest)
88

89 %SMUB Measurement Settings - Gate (Measuring Voltage)
90 fprintf(obj1, 'smub.measure.autozero = smub.AUTOZERO ONCE');
91 fprintf(obj1, ['smub.measure.nplc = ',num2str(nplc)]); % Measurement ...

integration rate
92 fprintf(obj1, ['smub.measure.rangev = ',num2str(vrange)]); % Set ...

measure range
93 fprintf(obj1, ['smub.measure.count = ',num2str(measnum)]); % Number of ...

measurements to collect.
94 fprintf(obj1, ['smub.measure.delay = ',num2str(measdelay)]); % Set the ...

delay before the first measurement
95 fprintf(obj1, ['smub.measure.interval = ',num2str(measinterval)]); % ...

Set the delay between measurements
96

97 %SMUB Buffer 1
98 fprintf(obj1, 'smub.nvbuffer1.clear() '); % Clears the buffer
99 fprintf(obj1,'smub.nvbuffer1.collecttimestamps = 1 '); % Enables ...

timestamp collect
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100 fprintf(obj1, ['smub.nvbuffer1.appendmode = ',num2str(buffappend)]); ...
%Overwrites previous measurements in buffer

101 fprintf(obj1,'smub.nvbuffer1.timestampresolution = 0.000001 '); %Sets ...
timestamp resultion to the 1us (finest)

102 %% Execute sweep
103 fprintf(obj1, 'display.clear()');
104 fprintf(obj1, 'display.screen = 2');
105

106 vdsloop = vdsstart;
107 fprintf(obj1, ['vdsloop = ',num2str(vdsstart)]);
108 fprintf(obj1, ['stepsize = ',num2str(stepsize)]);
109 fprintf(obj1, ['loopend = 0']);
110 fprintf(obj1, ['loopcheck = ',num2str(vdsstop-stepsize)]);
111

112 fprintf(obj1, ['smua.source.output = smua.OUTPUT ON ']); ...
%Measure w/shutter closed

113 fprintf(obj1, ['smub.source.output = smub.OUTPUT ON ']); ,... ...
%Enable Output

114 fprintf(obj1, ['smua.source.levelv = vdsloop ']); %Set drain voltage
115 fprintf(obj1, ['smub.source.levelv = ',num2str(vgsbias),' ']); %Set ...

gate bias voltage
116 fprintf(obj1, ['delay(2) ']); ,... %Enable Output
117

118 fprintf(obj1, ['for i = 1,',num2str(vdssteps),'do ',...
119 'smua.source.levelv = vdsloop ',... %Set drain voltage
120 'smub.source.levelv = ',num2str(vgsbias),' ',... ...

%Set gate bias voltage
121 'smua.source.output = smua.OUTPUT ON ',... ...

%Measure w/shutter closed
122 'smub.source.output = smub.OUTPUT ON ',... ...

%Enable Output
123 'waitcomplete() ',...
124 'smub.measure.v(smub.nvbuffer1) ',... ...

%Measure gate voltage
125 'smua.measure.v(smua.nvbuffer1) ',... ...

%Measure drain voltage
126 'smua.measure.i(smua.nvbuffer2) ',... ...

%Measure drain current
127 'waitcomplete() ',... ...

%Measure w/shutter open
128 'digio.writebit(2,1) ',... ...

%Set digio bit 2 to High for shutter open
129 'delay(',num2str(shutterdelay),') ',...
130 'smub.measure.v(smub.nvbuffer1) ',... ...

%Measure gate voltage
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131 'smua.measure.v(smua.nvbuffer1) ',... ...
%Measure drain voltage

132 'smua.measure.i(smua.nvbuffer2) ',... ...
%Measure drain current

133 'waitcomplete() ',...
134 'smua.source.output = smua.OUTPUT OFF ',... ...

%Disable output
135 'smub.source.output = smub.OUTPUT OFF ',... ...

%Disable output
136 'digio.writebit(2,0) ',... ...

%Set digio bit 2 to Low for shutter close
137 'vdsloop = vdsloop + stepsize ',... ...

%Increment loop
138 'if (vdsloop == loopcheck) then loopend = 1 end ',...
139 'end ']);
140 loopend = 0;
141 while loopend == 0
142 fprintf(obj1, 'print(loopend)'); %check the loopend variable
143 loopend = fscanf(obj1);
144 %pause(.1);
145 end
146 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
147 %% Retrieve data from keithley
148 fprintf(obj1, 'display.clear()');
149 fprintf(obj1, 'display.settext("$BSending Data$B")');
150

151 fprintf(obj1, 'print(smub.nvbuffer1.basetimestamp)'); % print the ...
timestamp of the buffer

152 temp = fscanf(obj1);
153 vgsbuffbasetime=str2num(temp);
154 clear temp;
155 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
156

157 fprintf(obj1, 'printbuffer(1,smub.nvbuffer1.n,smub.nvbuffer1.readings)');
158 temp = fscanf(obj1);
159 vgsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
160 clear temp;
161 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
162

163 fprintf(obj1, 'printbuffer(1,smub.nvbuffer1.n,smub.nvbuffer1.timestamps)');
164 temp = fscanf(obj1);
165 vgsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
166 clear temp;
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167 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...
(duration,frequency)

168

169 fprintf(obj1, 'print(smua.nvbuffer1.basetimestamp)');
170 temp = fscanf(obj1);
171 vdsbuffbasetime=str2num(temp);
172 clear temp;
173 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
174

175 fprintf(obj1, 'printbuffer(1,smua.nvbuffer1.n,smua.nvbuffer1.readings)');
176 temp = fscanf(obj1);
177 vdsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
178 clear temp;
179 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
180

181 fprintf(obj1, 'printbuffer(1,smua.nvbuffer1.n,smua.nvbuffer1.timestamps)');
182 temp = fscanf(obj1);
183 vdsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
184 clear temp;
185 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
186

187 fprintf(obj1, 'print(smua.nvbuffer2.basetimestamp)');
188 temp = fscanf(obj1);
189 idsbuffbasetime=str2num(temp);
190 clear temp;
191 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
192

193 fprintf(obj1, 'printbuffer(1,smua.nvbuffer2.n,smua.nvbuffer2.readings)');
194 temp = fscanf(obj1);
195 idsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
196 clear temp;
197 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
198

199 fprintf(obj1, 'printbuffer(1,smua.nvbuffer2.n,smua.nvbuffer2.timestamps)');
200 temp = fscanf(obj1);
201 idsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
202 clear temp;
203 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
204 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
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205 %% Print to Keithley screen and beep complete sequence
206 fprintf(obj1, 'display.clear()');
207 fprintf(obj1, 'display.settext("Test Complete")');
208 fprintf(obj1, 'beeper.beep(0.12, 500)'); %send beeper tone ...

(duration,frequency)
209 fprintf(obj1, 'beeper.beep(0.12, 800)'); %send beeper tone ...

(duration,frequency)
210 fprintf(obj1, 'beeper.beep(0.12, 1000)'); %send beeper tone ...

(duration,frequency)
211 fprintf(obj1, 'beeper.beep(0.12, 2000)'); %send beeper tone ...

(duration,frequency)
212 %% Data Reduction
213 vgsmeastime = vgsbufftime+vgsbuffbasetime; %Add the basetime to each ...

measurement time
214 vdsmeastime = vdsbufftime+vdsbuffbasetime;
215 idsmeastime = idsbufftime+idsbuffbasetime;
216

217 %take the buffers, average and split
218 vgsbuffmeas(1) = vgsbuffmeas(2); % Replace first entry due to Keithley ...

error on first measurement
219 vdsbuffmeas(1) = vdsbuffmeas(2);
220 idsbuffmeas(1) = idsbuffmeas(2);
221

222 %Reduce data for open and closed shutter measurements
223 %creates and open and closed vector from the read buffer which correspond
224 %to each pair of measurements.
225 j=1;
226 for i=1:vdssteps
227 vgsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vgsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
228 vdsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vdsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
229 idsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

idsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
230 vgsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vgsbufftime(((j*measnum)-measnum+1):(j*measnum));
231 vdsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vdsbufftime(((j*measnum)-measnum+1):(j*measnum));
232 idsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

idsbufftime(((j*measnum)-measnum+1):(j*measnum));
233 j=j+1;
234

235 vgsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vgsbuffmeas(((j*measnum)-measnum+1):(j*measnum));

236 vdsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vdsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
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237 idsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
idsbuffmeas(((j*measnum)-measnum+1):(j*measnum));

238 vgsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vgsbufftime(((j*measnum)-measnum+1):(j*measnum));

239 vdsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vdsbufftime(((j*measnum)-measnum+1):(j*measnum));

240 idsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
idsbufftime(((j*measnum)-measnum+1):(j*measnum));

241 j=j+1;
242 end
243 vgsdiff = vgsopen-vgsclosed;
244 vdsdiff = vdsopen-vdsclosed;
245 idsdiff = idsopen-idsclosed;
246

247 %FFT of signals
248 for i=1:measnum-1
249 closedtimediff(i)=vdsclosedtime(i+1)-vdsclosedtime(i);
250 end
251

252 NFFT = 2ˆnextpow2(measnum); % Next power of 2 from length of y
253 Fs = 1/mean(closedtimediff);
254 f = (0:NFFT/2-1)*Fs/NFFT;
255

256 for i=1:vdssteps
257 signal = ...

idsclosed(((i-1)*measnum+1):(i*measnum))-mean(idsclosed(((i-1)*
258 measnum+1):(i*measnum)));
259 window = hamming(length(signal));
260 signal = signal.*window';
261 tempfft = fft(signal,NFFT)/NFFT; %Mean subtracted
262 tempfft = tempfft(1:NFFT/2);
263 idsclosedfft(i,:) = abs(tempfft);
264 clear tempfft signal;
265 signal = idsopen(((i-1)*measnum+1):(i*measnum))-mean(idsopen(((i-1)*
266 measnum+1):(i*measnum)));
267 window = hamming(length(signal));
268 signal = signal.*window';
269 tempfft = fft(signal,NFFT)/NFFT; %Mean subtracted
270 tempfft = tempfft(1:NFFT/2);
271 idsopenfft(i,:) = abs(tempfft);
272 idsfftdiff(i,:) = idsopenfft(i,:)-idsclosedfft(i,:);
273 clear tempfft signal;
274 end
275

276 %[fftmaxdiff(1,:),fftmaxdiff(2,:)] = max(vdsopenfft(:,25:NFFT/2),[],2);
277 %fftmaxdiff(2,:)=fftmaxdiff(2,:)+25;

146



C. MATLAB Test Scripts

278

279 for i=1:(vdssteps)
280 vgsavgmeasclosed(i) = ...

mean(vgsclosed(((i*measnum)-(measnum-1)):i*measnum)); %Averages ...
the submeasurements for each vgs step

281 vdsavgmeasclosed(i) = ...
mean(vdsclosed(((i*measnum)-(measnum-1)):i*measnum));

282 idsavgmeasclosed(i) = ...
mean(idsclosed(((i*measnum)-(measnum-1)):i*measnum));

283 vgsavgmeasopen(i) = ...
mean(vgsopen(((i*measnum)-(measnum-1)):i*measnum)); %Averages ...
the submeasurements for each vgs step

284 vdsavgmeasopen(i) = mean(vdsopen(((i*measnum)-(measnum-1)):i*measnum));
285 idsavgmeasopen(i) = mean(idsopen(((i*measnum)-(measnum-1)):i*measnum));
286 vgsavgmeasdiff(i) = ...

mean(vgsdiff(((i*measnum)-(measnum-1)):i*measnum)); %Averages ...
the submeasurements for each vgs step

287 vdsavgmeasdiff(i) = mean(vdsdiff(((i*measnum)-(measnum-1)):i*measnum));
288 idsavgmeasdiff(i) = mean(idsdiff(((i*measnum)-(measnum-1)):i*measnum));
289 end
290

291 mkdir([foldername]);
292 %% Plots
293 %Shutter closed averages
294 figure(1);
295 idvar = 1E-7;
296 [AX,H1,H2] = ...

plotyy(vdsavgmeasclosed,vgsavgmeasclosed,vdsavgmeasclosed,idsavgmeasclosed);
297 set(AX(1),'fontsize',14,'Position',[0.12 0.17 0.72 0.72]);
298 set(AX(2),'xtick',[],'fontsize',14);
299 %set(AX(2),'xtick',[],'YLim',[(idbias-idvar) ...

(idbias+idvar)],'fontsize',14);
300 set(H1,'marker','*');
301 set(H2,'marker','*');
302 set(get(AX(1),'Ylabel'),'String','Avg Gate Voltage, Vgs ...

(V)','fontsize',14) ;
303 set(get(AX(2),'Ylabel'),'String','Avg Source-Drain Current, Id ...

(A)','fontsize',14) ;
304 set(gcf, 'color', 'w');
305 %xlim([vgsstart vgsstop]);
306 title(['Vds Sweep (Avg of ',num2str(measnum),' Measurements; Vgs = ...

',num2str(vgsbias),' V); Shutter Closed']);
307 xlabel('Drain Voltage, Vds (V)');
308 grid on;
309 print('-dpng', [foldername,'\',filespecifier,'-avgsclosed.png']);
310 %%
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311 %Shutter open averages
312 figure(2);
313 [AX,H1,H2] = ...

plotyy(vdsavgmeasopen,vgsavgmeasopen,vdsavgmeasopen,idsavgmeasopen);
314 set(AX(1),'fontsize',14,'Position',[0.12 0.17 0.72 0.72]);
315 set(AX(2),'xtick',[],'fontsize',14);
316 %set(AX(2),'xtick',[],'YLim',[(idbias-idvar) ...

(idbias+idvar)],'fontsize',14);
317 set(H1,'marker','*');
318 set(H2,'marker','*');
319 set(get(AX(1),'Ylabel'),'String','Avg Gate Voltage, Vgs ...

(V)','fontsize',14) ;
320 set(get(AX(2),'Ylabel'),'String','Avg Source-Drain Current, Id ...

(A)','fontsize',14) ;
321 set(gcf, 'color', 'w');
322 title(['Vds Sweep (Avg of ',num2str(measnum),' Measurements; Vgs = ...

',num2str(vgsbias),' V); Shutter Open']);
323 xlabel('Drain Voltage, Vds (V)');
324 grid on;
325 print('-dpng', [foldername,'\',filespecifier,'-avgsopen.png']);
326 %%
327 %Ids vs time
328 figure(3);
329 plot(idsmeastime,idsbuffmeas,'-*');
330 xlabel('Time (s)');
331 ylabel('Source-Drain Current (A)');
332 title('Source-Drain Current (A) vs Time (s)');
333 set(gca,'fontsize',14);
334 set(gcf, 'color', 'w');
335 grid on;
336 print('-dpng', [foldername,'\',filespecifier,'-ids-time.png']);
337 %%
338 %Plots Ids difference vs vgs;
339 figure(5);
340 plot(vdsopen,idsdiff,'*');
341 set(gca,'fontsize',14);
342 set(gcf, 'color', 'w');
343 xlabel('Drain Voltage, Vds (V)');
344 ylabel('Source-Drain Current Difference (A)');
345 title('Source-Drain Current Difference (A) vs Vds (V)');
346 grid on;
347 print('-dpng', [foldername,'\',filespecifier,'-idsdiffvds.png']);
348 %%
349 %Plots Ids difference vs time;
350 figure(6);
351 plot(idsopentime,idsdiff,'*');
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352 set(gca,'fontsize',14);
353 set(gcf, 'color', 'w');
354 xlabel('Time (s)');
355 ylabel('Source-Drain Current Difference (A)');
356 title('Source-Drain Current Difference (A) vs Time (s)');
357 grid on;
358 print('-dpng', [foldername,'\',filespecifier,'-idsdifftime.png']);
359 %%
360 %Plots avg ids difference vs vds;
361 figure(7);
362 plot(vdsavgmeasopen,idsavgmeasdiff,'-*');
363 set(gca,'fontsize',14);
364 set(gcf, 'color', 'w');
365 xlabel('Drain Voltage, Vds (V)');
366 ylabel('Source-Drain Current Difference (A)');
367 title('Avg Source-Drain Current Difference (A) vs Vds (V)');
368 grid on;
369 print('-dpng', [foldername,'\',filespecifier,'-idsavgdiffvds.png']);
370 %%
371 %Plots fft of vds open and closed;
372 figure(8);
373 plot(f(2:length(f)),idsclosedfft(1,2:length(idsclosedfft)),f(2:length(f)),
374 idsopenfft(1,2:length(idsopenfft))); %No DC
375 set(gca,'fontsize',14);
376 set(gcf, 'color', 'w');
377 legend('Shutter Closed','Shutter Open');
378 xlabel('Frequency (Hz)');
379 ylabel(' |Id |');
380 title('FFT of First Vds');
381 grid on;
382 %ylim([-0E-3 1E-3]);
383 %xlim([0 50]);
384 print('-dpng', [foldername,'\',filespecifier,'-idsfft.png']);
385 %%
386 % %Plots fft of vds open and closed;
387 figure(9);
388 clf(9);
389 cc=hsv(vdssteps);
390 hold on;
391 for i=1:vdssteps
392 plot(f(2:length(f)),idsfftdiff(i,2:length(idsfftdiff)),'color',cc(i,:)); ...

%No DC
393 end
394 hold off;
395 set(gca,'fontsize',14);
396 set(gcf, 'color', 'w');
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397 xlabel('Frequency (Hz)');
398 ylabel(' |Ids |');
399 title('Difference of FFT Open/Closed Shutter of Ids');
400 grid on;
401 %ylim([-0E-3 1E-5]);
402 %xlim([825 875]);
403 legendmatrix=cellstr(num2str(vdsavgmeasopen(1:vdssteps)','Vds = %f'));
404 legend(legendmatrix);
405 print('-dpng', [foldername,'\',filespecifier,'-idsfftdiff.png']);
406 %% Make a wave to compare expected fft
407 % t=vdsclosedtime(1):1/Fs:vdsclosedtime(length(vdsclosedtime));
408 % %chopperwave = ...

mean(vdsclosed)+range(vdsclosed)*square(2*pi*chopperfreq*t); %shifted
409 % chopperwave = square(2*pi*chopperfreq*t); %shifted
410 % NFFT1 = 2ˆnextpow2(length(chopperwave)); % Next power of 2 from ...

length of y
411 % %Fs = chopperfreq;
412 % f1 = (0:NFFT1/2-1)*Fs/NFFT1;
413 % sqwvfft = fft(chopperwave,NFFT1)/NFFT1;
414 % sqwvfft = sqwvfft(1:NFFT1/2);
415 % sqwvfft = abs(sqwvfft);
416 % figure(11);
417 % subplot(2,1,1); plot(t,chopperwave); xlim([0 1/chopperfreq]); ...

xlabel('Time (s)');
418 % subplot(2,1,2); plot(f1(2:length(f1)),sqwvfft(2:length(sqwvfft))); ...

xlabel('Freq (Hz)');%No DC
419 % print('-dpng', [foldername,'\',filespecifier,'-synfft.png']);
420

421 %% Reset Keithley & Save Data
422 save([foldername,'/',filespecifier,'.mat']);
423 fprintf(obj1, '*RST'); %command to reset the keithley
424 %pause(5);
425 %end
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sweepvgs fixedvds measureId.m

1 %% Sweeps Vgs w/Fixed Vds - Source Gate Voltage and Drain Voltage, ...
Measure Drain Current

2 % This script sweeps the gate voltage for a fixed drain voltage bias and
3 % measures the source drain current.
4

5 close all;
6 clearvars -except obj1 k testnum;
7 testnum=testnum+1;
8

9 % Timing Variables
10 cd '/Users/gfertig/Dropbox/Thesis/THz Project/Testing/20140225 Test Data'
11 foldername = [num2str(testnum),'-OldBoard-T1-Gunn-Id'];
12 chopperfreq = 100; %Hz - For plots
13 nplc = .1; % Integration rate of measurement 1,.1,.01,.001 (0.001 finest)
14 measnum = 100; %Number of submeasurements per set ()
15 measinterval = 0.0; %Keithley delay BETWEEN submeasurements
16 measdelay = 00; %Keithley delay BEFORE a set of measurements occurs
17 shutterdelay = 0.00; % Delay (s) for shutter full open
18 newdelay = 0; %Delay(s) before an open/close set of measurements
19

20 % Gate Loop Variables
21 vdsbias = 1.0; %Fixed bias voltage for Vds
22 vgssteps = 25; %Number of steps for Vgs sweep %Max ...

vgssteps*measnum=10000 for measnum=1000 is 10
23 vgsstart = 0; %Start Voltage for Vgs sweep
24 vgsstop = 1; %Stop Voltage for Vgs sweep
25 stepsize = (vgsstop - vgsstart) / (vgssteps); %Calculate sweep step size
26

27 vrange = 6; %Voltage source range: 100mV, 1V, 6V, 40V
28 irange = 100E-6; % Current source range: 100nA, 1uA, 100uA, 1mA, 10mA, ...

100mA, 1A, 3A
29 vlimit = 10; %Voltage limit
30 ilimit = 10E-3; %Current limit
31

32 buffappend = 1; %'0' tells the buffers to overwrite for each set of ...
measurements, '1' appends

33 filespecifier = ...
['MeasId SwpVgs CH',num2str(chopperfreq),' MEAS',num2str(measnum),' NPLC',

34 num2str(nplc),' VdsBias',num2str(vdsbias)];
35 %% Reset Keithley
36 fprintf(obj1, '*RST'); %command to reset the keithley
37 fprintf(obj1, 'smua.reset()'); % Reset SMU
38 fprintf(obj1, 'smub.reset()'); % Reset SMU
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39 fprintf(obj1, 'errorqueue.clear()'); % Clear the error queue
40

41 %Display and Beep Sequence
42 fprintf(obj1, 'display.clear()');
43 fprintf(obj1, 'display.settext("$BTest in Progess$B")');
44 fprintf(obj1, 'beeper.beep(0.1, 500)'); %send beeper tone ...

(duration,frequency)
45 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
46

47 %Digio reset
48 fprintf(obj1, ['digio.writebit(2,1) ']); %Set digio bit 2 to High for ...

shutter open
49 pause(shutterdelay);
50 fprintf(obj1, ['digio.writebit(2,0) ']); %Set digio bit 2 to Low for ...

shutter close
51 %% Configure Sources
52 % Source A Configuration - Drain
53 fprintf(obj1, ['smua.source.func = smua.OUTPUT DCVOLTS']); %Select ...

voltage source
54 fprintf(obj1, ['smua.source.rangev = ',num2str(vrange)]); % Set source ...

function range
55 fprintf(obj1, ['smua.source.limiti = ',num2str(ilimit)]); %Set current ...

limit
56 fprintf(obj1, ['smua.source.limitv = ',num2str(vlimit)]); %Set voltage ...

limit
57 fprintf(obj1, ['smua.source.levelv = 0']); %Set source voltage to 0 to ...

start
58

59 % Source B Configuration - Gate
60 fprintf(obj1, ['smub.source.func = smub.OUTPUT DCVOLTS']);
61 fprintf(obj1, ['smub.source.rangev = ',num2str(vrange)]); % Set source ...

range
62 fprintf(obj1, ['smub.source.limitv = ',num2str(vlimit)]); %Set voltage ...

limit
63 fprintf(obj1, ['smub.source.limiti = ',num2str(ilimit)]); %Setcurrent limit
64 fprintf(obj1, ['smub.source.levelv = 0']); %Set source voltage to 0 to ...

start
65 %% Configure Measurements & Buffers
66

67 % SMUA Measurement Settings - Drain (Measuring Current)
68 fprintf(obj1, 'smua.measure.autozero = smua.AUTOZERO ONCE');
69 %fprintf(obj1, 'smua.measure.autozero = smua.AUTOZERO OFF');
70 %fprintf(obj1, 'smua.measure.autorangei = smua.AUTORANGE ON'); % ...

Enable measure autorange
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71 fprintf(obj1, ['smua.measure.rangei = ',num2str(irange)]); % Set ...
current range

72 fprintf(obj1, ['smua.measure.nplc = ',num2str(nplc)]); % Measurement ...
integration rate

73 fprintf(obj1, ['smua.measure.count = ',num2str(measnum)]); % Number of ...
measurements to collect.

74 fprintf(obj1, ['smua.measure.delay = ',num2str(measdelay)]); % Set the ...
delay before the first measurement

75 fprintf(obj1, ['smua.measure.interval = ',num2str(measinterval)]); % ...
Set the delay between measurements

76

77 %SMUA Buffer 1 - Stores drain voltage
78 fprintf(obj1, 'smua.nvbuffer1.clear() '); % Clears the buffer
79 fprintf(obj1,'smua.nvbuffer1.collecttimestamps = 1 '); % Enables ...

timestamp collect
80 fprintf(obj1, ['smua.nvbuffer1.appendmode = ',num2str(buffappend)]); ...

%Overwrites previous measurements in buffer
81 fprintf(obj1,'smua.nvbuffer1.timestampresolution = 0.000001 '); %Sets ...

timestamp resultion to the 1us (finest)
82

83 %SMUA Buffer 2 - Stores drain current
84 fprintf(obj1, 'smua.nvbuffer2.clear() '); % Clears the buffer
85 fprintf(obj1,'smua.nvbuffer2.collecttimestamps = 1 '); % Enables ...

timestamp collect
86 fprintf(obj1, ['smua.nvbuffer2.appendmode = ',num2str(buffappend)]); ...

%Overwrites previous measurements in buffer
87 fprintf(obj1,'smua.nvbuffer2.timestampresolution = 0.000001 '); %Sets ...

timestamp resultion to the 1us (finest)
88

89 %SMUB Measurement Settings - Gate (Measuring Voltage)
90 fprintf(obj1, 'smub.measure.autozero = smub.AUTOZERO ONCE');
91 %fprintf(obj1, 'smua.measure.autozero = smua.AUTOZERO OFF');
92 fprintf(obj1, ['smub.measure.nplc = ',num2str(nplc)]); % Measurement ...

integration rate
93 fprintf(obj1, ['smub.measure.rangev = ',num2str(vrange)]); % Set ...

measure range
94 fprintf(obj1, ['smub.measure.count = ',num2str(measnum)]); % Number of ...

measurements to collect.
95 fprintf(obj1, ['smub.measure.delay = ',num2str(measdelay)]); % Set the ...

delay before the first measurement
96 fprintf(obj1, ['smub.measure.interval = ',num2str(measinterval)]); % ...

Set the delay between measurements
97

98 %SMUB Buffer 1
99 fprintf(obj1, 'smub.nvbuffer1.clear() '); % Clears the buffer
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100 fprintf(obj1,'smub.nvbuffer1.collecttimestamps = 1 '); % Enables ...
timestamp collect

101 fprintf(obj1, ['smub.nvbuffer1.appendmode = ',num2str(buffappend)]); ...
%Overwrites previous measurements in buffer

102 fprintf(obj1,'smub.nvbuffer1.timestampresolution = 0.000001 '); %Sets ...
timestamp resultion to the 1us (finest)

103 %% Execute sweep
104 fprintf(obj1, 'display.clear()');
105 fprintf(obj1, 'display.screen = 2');
106

107 vgsloop = vgsstart;
108 fprintf(obj1, ['vgsloop = ',num2str(vgsstart)]);
109 fprintf(obj1, ['stepsize = ',num2str(stepsize)]);
110 fprintf(obj1, ['loopend = 0']);
111 fprintf(obj1, ['loopcheck = ',num2str(vgsstop-stepsize)]);
112

113 fprintf(obj1, ['smua.source.output = smua.OUTPUT ON ']); ...
%Measure w/shutter closed

114 fprintf(obj1, ['smub.source.output = smub.OUTPUT ON ']); ,... ...
%Enable Output

115 fprintf(obj1, ['smub.source.levelv = vgsloop ']); %Set gate voltage
116 fprintf(obj1, ['smua.source.levelv = ',num2str(vdsbias),' ']); %Set ...

drain bias voltage
117 fprintf(obj1, ['delay(3) ']); ,... %Enable Output
118

119 fprintf(obj1, ['for i = 1,',num2str(vgssteps),'do ',...
120 'smub.source.levelv = vgsloop ',... %Set gate voltage
121 'smua.source.levelv = ',num2str(vdsbias),' ',... ...

%Set drain bias voltage
122 'smua.source.output = smua.OUTPUT ON ',... ...

%Measure w/shutter closed
123 'smub.source.output = smub.OUTPUT ON ',... ...

%Enable Output
124 'delay(',num2str(newdelay),') ',...
125 'waitcomplete() ',...
126 'smub.measure.v(smub.nvbuffer1) ',... ...

%Measure gate voltage
127 'smua.measure.v(smua.nvbuffer1) ',... ...

%Measure drain voltage
128 'smua.measure.i(smua.nvbuffer2) ',... ...

%Measure drain current
129 'waitcomplete() ',... ...

%Measure w/shutter open
130 'digio.writebit(2,1) ',... ...

%Set digio bit 2 to High for shutter open
131 'delay(',num2str(shutterdelay),') ',...
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132 'smub.measure.v(smub.nvbuffer1) ',... ...
%Measure gate voltage

133 'smua.measure.v(smua.nvbuffer1) ',... ...
%Measure drain voltage

134 'smua.measure.i(smua.nvbuffer2) ',... ...
%Measure drain current

135 'waitcomplete() ',...
136 'smua.source.output = smua.OUTPUT OFF ',... ...

%Disable output
137 'smub.source.output = smub.OUTPUT OFF ',... ...

%Disable output
138 'digio.writebit(2,0) ',... ...

%Set digio bit 2 to Low for shutter close
139 'vgsloop = vgsloop + stepsize ',... ...

%Increment loop
140 'if (vgsloop == loopcheck) then loopend = 1 end ',...
141 'end ']);
142 loopend = 0;
143 while loopend == 0
144 fprintf(obj1, 'print(loopend)'); %check the loopend variable
145 loopend = fscanf(obj1);
146 %pause(.1);
147 end
148 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
149 %% Retrieve data from keithley
150 fprintf(obj1, 'display.clear()');
151 fprintf(obj1, 'display.settext("$BSending Data$B")');
152

153 fprintf(obj1, 'print(smub.nvbuffer1.basetimestamp)'); % print the ...
timestamp of the buffer

154 temp = fscanf(obj1);
155 vgsbuffbasetime=str2num(temp);
156 clear temp;
157 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
158

159 fprintf(obj1, 'printbuffer(1,smub.nvbuffer1.n,smub.nvbuffer1.readings)');
160 temp = fscanf(obj1);
161 vgsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
162 clear temp;
163 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
164

165 fprintf(obj1, 'printbuffer(1,smub.nvbuffer1.n,smub.nvbuffer1.timestamps)');
166 temp = fscanf(obj1);
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167 vgsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
168 clear temp;
169 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
170

171 fprintf(obj1, 'print(smua.nvbuffer1.basetimestamp)');
172 temp = fscanf(obj1);
173 vdsbuffbasetime=str2num(temp);
174 clear temp;
175 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
176

177 fprintf(obj1, 'printbuffer(1,smua.nvbuffer1.n,smua.nvbuffer1.readings)');
178 temp = fscanf(obj1);
179 vdsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
180 clear temp;
181 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
182

183 fprintf(obj1, 'printbuffer(1,smua.nvbuffer1.n,smua.nvbuffer1.timestamps)');
184 temp = fscanf(obj1);
185 vdsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
186 clear temp;
187 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
188

189 fprintf(obj1, 'print(smua.nvbuffer2.basetimestamp)');
190 temp = fscanf(obj1);
191 idsbuffbasetime=str2num(temp);
192 clear temp;
193 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
194

195 fprintf(obj1, 'printbuffer(1,smua.nvbuffer2.n,smua.nvbuffer2.readings)');
196 temp = fscanf(obj1);
197 idsbuffmeas = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
198 clear temp;
199 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
200

201 fprintf(obj1, 'printbuffer(1,smua.nvbuffer2.n,smua.nvbuffer2.timestamps)');
202 temp = fscanf(obj1);
203 idsbufftime = cell2mat(textscan(temp, '%f64', 'delimiter', ','));
204 clear temp;
205 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...

(duration,frequency)
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206 fprintf(obj1, 'beeper.beep(0.1, 2000)'); %send beeper tone ...
(duration,frequency)

207 %% Print to Keithley screen and beep complete sequence
208 fprintf(obj1, 'display.clear()');
209 fprintf(obj1, 'display.settext("Test Complete")');
210 fprintf(obj1, 'beeper.beep(0.12, 500)'); %send beeper tone ...

(duration,frequency)
211 fprintf(obj1, 'beeper.beep(0.12, 800)'); %send beeper tone ...

(duration,frequency)
212 fprintf(obj1, 'beeper.beep(0.12, 1000)'); %send beeper tone ...

(duration,frequency)
213 fprintf(obj1, 'beeper.beep(0.12, 2000)'); %send beeper tone ...

(duration,frequency)
214 %% Data Reduction
215 vgsmeastime = vgsbufftime+vgsbuffbasetime; %Add the basetime to each ...

measurement time
216 vdsmeastime = vdsbufftime+vdsbuffbasetime;
217 idsmeastime = idsbufftime+idsbuffbasetime;
218

219 %take the buffers, average and split
220 vgsbuffmeas(1) = vgsbuffmeas(2); % Replace first entry due to Keithley ...

error on first measurement
221 vdsbuffmeas(1) = vdsbuffmeas(2);
222 idsbuffmeas(1) = idsbuffmeas(2);
223

224 %Reduce data for open and closed shutter measurements
225 %creates and open and closed vector from the read buffer which correspond
226 %to each pair of measurements.
227 j=1;
228 for i=1:vgssteps
229 vgsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vgsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
230 vdsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vdsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
231 idsclosed((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

idsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
232 vgsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vgsbufftime(((j*measnum)-measnum+1):(j*measnum));
233 vdsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

vdsbufftime(((j*measnum)-measnum+1):(j*measnum));
234 idsclosedtime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...

idsbufftime(((j*measnum)-measnum+1):(j*measnum));
235 j=j+1;
236

237 vgsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vgsbuffmeas(((j*measnum)-measnum+1):(j*measnum));
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238 vdsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vdsbuffmeas(((j*measnum)-measnum+1):(j*measnum));

239 idsopen((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
idsbuffmeas(((j*measnum)-measnum+1):(j*measnum));

240 vgsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vgsbufftime(((j*measnum)-measnum+1):(j*measnum));

241 vdsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
vdsbufftime(((j*measnum)-measnum+1):(j*measnum));

242 idsopentime((((i-1)*measnum)+1):((i-1)*measnum)+measnum) = ...
idsbufftime(((j*measnum)-measnum+1):(j*measnum));

243 j=j+1;
244 end
245 vgsdiff = vgsopen-vgsclosed;
246 vdsdiff = vdsopen-vdsclosed;
247 idsdiff = idsopen-idsclosed;
248

249 %FFT of signals
250 for i=1:measnum-1
251 closedtimediff(i)=vdsclosedtime(i+1)-vdsclosedtime(i);
252 end
253

254 NFFT = 2ˆnextpow2(measnum); % Next power of 2 from length of y
255 Fs = 1/mean(closedtimediff);
256 f = (0:NFFT/2-1)*Fs/NFFT;
257

258 for i=1:vgssteps
259 signal = idsclosed(((i-1)*measnum+1):(i*measnum))-mean(idsclosed(
260 ((i-1)*measnum+1):(i*measnum)));
261 window = hamming(length(signal));
262 signal = signal.*window';
263 tempfft = fft(signal,NFFT)/NFFT; %Mean subtracted
264 tempfft = tempfft(1:NFFT/2);
265 idsclosedfft(i,:) = abs(tempfft);
266 clear tempfft signal;
267 signal = idsopen(((i-1)*measnum+1):(i*measnum))-mean(idsopen(
268 ((i-1)*measnum+1):(i*measnum)));
269 window = hamming(length(signal));
270 signal = signal.*window';
271 tempfft = fft(signal,NFFT)/NFFT; %Mean subtracted
272 tempfft = tempfft(1:NFFT/2);
273 idsopenfft(i,:) = abs(tempfft);
274 idsfftdiff(i,:) = idsopenfft(i,:)-idsclosedfft(i,:);
275 clear tempfft signal;
276 end
277

278 %[fftmaxdiff(1,:),fftmaxdiff(2,:)] = max(vdsopenfft(:,25:NFFT/2),[],2);
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279 %fftmaxdiff(2,:)=fftmaxdiff(2,:)+25;
280

281 for i=1:(vgssteps)
282 vgsavgmeasclosed(i) = ...

mean(vgsclosed(((i*measnum)-(measnum-1)):i*measnum)); %Averages ...
the submeasurements for each vgs step

283 vdsavgmeasclosed(i) = ...
mean(vdsclosed(((i*measnum)-(measnum-1)):i*measnum));

284 idsavgmeasclosed(i) = ...
mean(idsclosed(((i*measnum)-(measnum-1)):i*measnum));

285 vgsavgmeasopen(i) = ...
mean(vgsopen(((i*measnum)-(measnum-1)):i*measnum)); %Averages ...
the submeasurements for each vgs step

286 vdsavgmeasopen(i) = mean(vdsopen(((i*measnum)-(measnum-1)):i*measnum));
287 idsavgmeasopen(i) = mean(idsopen(((i*measnum)-(measnum-1)):i*measnum));
288 vgsavgmeasdiff(i) = ...

mean(vgsdiff(((i*measnum)-(measnum-1)):i*measnum)); %Averages ...
the submeasurements for each vgs step

289 vdsavgmeasdiff(i) = mean(vdsdiff(((i*measnum)-(measnum-1)):i*measnum));
290 idsavgmeasdiff(i) = mean(idsdiff(((i*measnum)-(measnum-1)):i*measnum));
291 end
292

293 mkdir([foldername]);
294 %% Plots
295 %Shutter closed averages
296 figure(1);
297 idvar = 1E-7;
298 [AX,H1,H2] = ...

plotyy(vgsavgmeasclosed,vdsavgmeasclosed,vgsavgmeasclosed,idsavgmeasclosed);
299 set(AX(1),'fontsize',14,'Position',[0.12 0.17 0.72 0.72]);
300 set(AX(2),'xtick',[],'fontsize',14);
301 %set(AX(2),'xtick',[],'YLim',[(idbias-idvar) ...

(idbias+idvar)],'fontsize',14);
302 set(H1,'marker','*');
303 set(H2,'marker','*');
304 set(get(AX(1),'Ylabel'),'String','Avg Source-Drain Voltage, Vds ...

(V)','fontsize',14) ;
305 set(get(AX(2),'Ylabel'),'String','Avg Source-Drain Current, Id ...

(A)','fontsize',14) ;
306 set(gcf, 'color', 'w');
307 %xlim([vgsstart vgsstop]);
308 title(['Vgs Sweep (Avg of ',num2str(measnum),' Measurements; Vds = ...

',num2str(vdsbias),' V); Shutter Closed']);
309 xlabel('Gate Voltage, Vgs (V)');
310 grid on;
311 print('-dpng', [foldername,'\',filespecifier,'-avgsclosed.png']);
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312 %%
313 %Shutter open averages
314 figure(2);
315 [AX,H1,H2] = ...

plotyy(vgsavgmeasopen,vdsavgmeasopen,vgsavgmeasopen,idsavgmeasopen);
316 set(AX(1),'fontsize',14,'Position',[0.12 0.17 0.72 0.72]);
317 set(AX(2),'xtick',[],'fontsize',14);
318 %set(AX(2),'xtick',[],'YLim',[(idbias-idvar) ...

(idbias+idvar)],'fontsize',14);
319 set(H1,'marker','*');
320 set(H2,'marker','*');
321 set(get(AX(1),'Ylabel'),'String','Avg Source-Drain Voltage, Vds ...

(V)','fontsize',14) ;
322 set(get(AX(2),'Ylabel'),'String','Avg Source-Drain Current, Id ...

(A)','fontsize',14) ;
323 set(gcf, 'color', 'w');
324 title(['Vgs Sweep (Avg of ',num2str(measnum),' Measurements; Vds = ...

',num2str(vdsbias),' V); Shutter Open']);
325 xlabel('Gate Voltage, Vgs (V)');
326 grid on;
327 print('-dpng', [foldername,'\',filespecifier,'-avgsopen.png']);
328 %%
329 %Ids vs time
330 figure(3);
331 plot(idsmeastime,idsbuffmeas,'-*');
332 xlabel('Time (s)');
333 ylabel('Source-Drain Current (A)');
334 title('Source-Drain Current (A) vs Time (s)');
335 set(gca,'fontsize',14);
336 set(gcf, 'color', 'w');
337 grid on;
338 print('-dpng', [foldername,'\',filespecifier,'-ids-time.png']);
339 %%
340 %Plots Ids difference vs vgs;
341 figure(5);
342 plot(vgsopen,idsdiff,'*');
343 set(gca,'fontsize',14);
344 set(gcf, 'color', 'w');
345 xlabel('Gate Voltage, Vgs (V)');
346 ylabel('Source-Drain Current Difference (A)');
347 title('Source-Drain Current Difference (A) vs Vgs (V)');
348 grid on;
349 print('-dpng', [foldername,'\',filespecifier,'-idsdiffvgs.png']);
350 %%
351 %Plots Ids difference vs time;
352 figure(6);
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353 plot(idsopentime,idsdiff,'*');
354 set(gca,'fontsize',14);
355 set(gcf, 'color', 'w');
356 xlabel('Time (s)');
357 ylabel('Source-Drain Current Difference (A)');
358 title('Source-Drain Current Difference (A) vs Time (s)');
359 grid on;
360 print('-dpng', [foldername,'\',filespecifier,'-idsdifftime.png']);
361 %%
362 %Plots avg ids difference vs vgs;
363 figure(7);
364 plot(vgsavgmeasopen,idsavgmeasdiff,'-*');
365 set(gca,'fontsize',14);
366 set(gcf, 'color', 'w');
367 xlabel('Gate Voltage, Vgs (V)');
368 ylabel('Source-Drain Current Difference (A)');
369 title('Avg Source-Drain Current Difference (A) vs Vgs (V)');
370 grid on;
371 print('-dpng', [foldername,'\',filespecifier,'-idsavgdiffvgs.png']);
372 %%
373 %Plots fft of vds open and closed;
374 % figure(8);
375 % ...

plot(f(2:length(f)),idsclosedfft(1,2:length(idsclosedfft)),f(2:length(f)),
376 idsopenfft(1,2:length(idsopenfft))); %No DC
377 % set(gca,'fontsize',14);
378 % set(gcf, 'color', 'w');
379 % legend('Shutter Closed','Shutter Open');
380 % xlabel('Frequency (Hz)');
381 % ylabel('|Id|');
382 % title('FFT of First Vds');
383 % grid on;
384 % %ylim([-0E-3 1E-3]);
385 % %xlim([0 50]);
386 % print('-dpng', [foldername,'\',filespecifier,'-idsfft.png']);
387 %%
388 %Plots fft of vds open and closed;
389 % figure(9);
390 % clf(9);
391 % cc=hsv(vgssteps);
392 % for i=1:vgssteps
393 % hold on;
394 % ...

plot(f(2:length(f)),idsfftdiff(i,2:length(idsfftdiff)),'color',cc(i,:)); ...
%No DC

395 % hold off;
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396 % end
397 % set(gca,'fontsize',14);
398 % set(gcf, 'color', 'w');
399 % xlabel('Frequency (Hz)');
400 % ylabel('|Ids|');
401 % title('Difference of FFT Open/Closed Shutter of Ids');
402 % grid on;
403 % %ylim([-0E-3 1E-5]);
404 % %xlim([825 875]);
405 % legendmatrix=cellstr(num2str(vgsavgmeasopen(1:vgssteps)','Vgs = %f'));
406 % legend(legendmatrix);
407 % print('-dpng', [foldername,'\',filespecifier,'-idsfftdiff.png']);
408 % %% Make a wave to compare expected fft
409 % t=vdsclosedtime(1):1/Fs:vdsclosedtime(length(vdsclosedtime));
410 % %chopperwave = ...

mean(vdsclosed)+range(vdsclosed)*square(2*pi*chopperfreq*t); %shifted
411 % chopperwave = square(2*pi*chopperfreq*t); %shifted
412 % NFFT1 = 2ˆnextpow2(length(chopperwave)); % Next power of 2 from ...

length of y
413 % %Fs = chopperfreq;
414 % f1 = (0:NFFT1/2-1)*Fs/NFFT1;
415 % sqwvfft = fft(chopperwave,NFFT1)/NFFT1;
416 % sqwvfft = sqwvfft(1:NFFT1/2);
417 % sqwvfft = abs(sqwvfft);
418 % figure(11);
419 % subplot(2,1,1); plot(t,chopperwave); xlim([0 1/chopperfreq]); ...

xlabel('Time (s)');
420 % subplot(2,1,2); plot(f1(2:length(f1)),sqwvfft(2:length(sqwvfft))); ...

xlabel('Freq (Hz)');%No DC
421 % print('-dpng', [foldername,'\',filespecifier,'-synfft.png']);
422

423 %% Reset Keithley & Save Data
424 save([foldername,'/',filespecifier,'.mat']);
425 fprintf(obj1, '*RST'); %command to reset the keithley
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